Solution-processed CuOx as an efficient hole-extraction layer for inverted planar heterojunction perovskite solar cells
- Corresponding author: Chen Hong-Zheng, hzchen@zju.edu.cn
Citation:
Yu Zhi-Kai, Fu Wei-Fei, Liu Wen-Qing, Zhang Zhong-Qiang, Liu Yu-Jing, Yan Jie-Lin, Ye Tao, Yang Wei-Tao, Li Han-Ying, Chen Hong-Zheng. Solution-processed CuOx as an efficient hole-extraction layer for inverted planar heterojunction perovskite solar cells[J]. Chinese Chemical Letters,
;2017, 28(1): 13-18.
doi:
10.1016/j.cclet.2016.06.021
Stranks S.D., Eperon G.E., Grancini G.. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013,342:341-344. doi: 10.1126/science.1243982
Lin Q.Q., Armin A., Nagiri R.C.R., Burn P.L., Meredith P.. Electro-optics of perovskite solar cells[J]. Nat. Photon., 2015,9:106-112.
Lee M.M., Teuscher J., Miyasaka T., Murakami T.N., Snaith H.J.. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012,338:643-647. doi: 10.1126/science.1228604
Liu T.H., Chen K., Hu Q.. Fast-growing procedure for perovskite films in planar heterojunction perovskite solar cells[J]. Chin. Chem. Lett., 2015,26:1518-1521. doi: 10.1016/j.cclet.2015.09.022
Yang Z.S., Yang L.G., Wu G., Wang M., Chen H.Z.. A heterojunction based on wellordered organic-inorganic hybrid perovskite and its photovoltaic performance[J]. Acta Chim. Sin., 2011,69:627-632.
Wu G., Zhang X.Q., Gu Z.W., Chen H.Z.. Progress of the research on organicInorganic hybrid perovskites based solar cells[J]. Mater. China, 2015,34:136-143.
Jeon N.J., Noh J.H., Yang W.S.. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015,517:476-480. doi: 10.1038/nature14133
Zhou H.P., Chen Q., Li G.. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014,345:542-546. doi: 10.1126/science.1254050
Xue Q.F., Sun C., Hu Z.C.. Recent advances in perovskite solar cells:morphology control and interfacial engineering[J]. Acta Chim. Sin., 2015,73:179-192. doi: 10.6023/A14090674
Nie W.Y., Tsai H., Asadpour R.. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains[J]. Science, 2015,347:522-525. doi: 10.1126/science.aaa0472
Qin P., Tanaka S., Ito S.. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency[J]. Nat. Commun., 2014,53834.
Wang L., Fu W.F., Gu Z.W.. Low temperature solution processed planar heterojunction perovskite solar cells with a CdSe nanocrystal as an electron transport/extraction layer[J]. J. Mater. Chem. C, 2014,2:9087-9090. doi: 10.1039/C4TC01875C
Shao Y.C., Xiao Z.G., Bi C.. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells[J]. Nat. Commun., 2014,55784. doi: 10.1038/ncomms6784
Liang P.W., Liao C.Y., Chueh C.C.. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells[J]. Adv. Mater., 2014,26:3748-3754. doi: 10.1002/adma.v26.22
Heo J.H., Song D.H., Han H.J.. Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate[J]. Adv. Mater., 2015,27:3424-3430. doi: 10.1002/adma.v27.22
Wu C.G., Chiang C.H., Tseng Z.L.. High efficiency stable inverted perovskite solar cells without current hysteresis[J]. Energy Environ. Sci., 2015,8:2725-2733. doi: 10.1039/C5EE00645G
Heo J.H., Han H.J., Kim D., Ahn T.K., Im S.H.. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency[J]. Energy Environ. Sci., 2015,8:1602-1608. doi: 10.1039/C5EE00120J
Chen W., Wu Y.Z., Yue Y.F.. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers[J]. Science, 2015,350:944-948. doi: 10.1126/science.aad1015
Huang C.Y., Fu W.F., Li C.Z.. Dopant-free hole-transporting material with a C3h symmetrical truxene core for highly efficient perovskite solar cells[J]. J. Am. Chem. Soc., 2016,138:2528-2531. doi: 10.1021/jacs.6b00039
Krishna A., Sabba D., Li H.R.. Novel hole transporting materials based on triptycene core for high efficiency mesoscopic perovskite solar cells[J]. Chem. Sci., 2014,5:2702-2709. doi: 10.1039/C4SC00814F
Hua Y., Xu B., Liu P.. High conductivity Ag-based metal organic complexes as dopant-free hole-transport materials for perovskite solar cells with high fill factors[J]. Chem. Sci., 2016,7:2633-2638. doi: 10.1039/C5SC03569D
Bi C., Wang Q., Shao Y.C.. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells[J]. Nat. Commun., 2015,67747. doi: 10.1038/ncomms8747
Wang Q., Bi C., Huang J.S.. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells[J]. Nano Energy, 2015,15:275-280. doi: 10.1016/j.nanoen.2015.04.029
Tan Z.A., Qian D.P., Zhang W.Q.. Efficient and stable polymer solar cells with solution-processed molybdenum oxide interfacial layer[J]. J. Mater. Chem. A, 2013,1:657-664. doi: 10.1039/C2TA00325B
Qiu W.M., Hadipour A., Müller R.. Ultrathin ammonium heptamolybdate films as efficient room-temperature hole transport layers for organic solar cells[J]. ACS Appl. Mater. Interfaces, 2014,6:16335-16343. doi: 10.1021/am504606u
Tan Z.A., Zhang W.Q., Cui C.H.. Solution-processed vanadium oxide as a hole collection layer on an ITO electrode for high-performance polymer solar cells[J]. Phys. Chem. Chem. Phys., 2012,14:14589-14595. doi: 10.1039/c2cp43125d
Steirer K.X., Ndione P.F., Widjonarko N.E.. Enhanced efficiency in plastic solar cells via energy matched solution processed NiOx interlayers[J]. Adv. Energy Mater., 2011,1:813-820. doi: 10.1002/aenm.v1.5
Tan Z.A., Li L.J., Cui C.H.. Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells[J]. J. Phys. Chem. C, 2012,116:18626-18632. doi: 10.1021/jp304878u
Wang F.Z., Tan Z.A., Li Y.F.. Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells[J]. Energy Environ. Sci., 2015,8:1059-1091. doi: 10.1039/C4EE03802A
Yin X.T., Que M.D., Xing Y.L., Que W.X.. High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer[J]. J. Mater. Chem. A, 2015,3:24495-24503. doi: 10.1039/C5TA08193A
Kim J.H., Liang P.W., Williams S.T.. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solutionprocessed copper-doped nickel oxide hole-transporting layer[J]. Adv. Mater., 2015,27:695-701. doi: 10.1002/adma.201404189
Jung J.W., Chueh C.C., Jen A.K.Y.. High-performance semitransparent perovskite solar cells with 10% power conversion efficiency and 25% average visible transmittance based on transparent CuSCN as the hole-transporting material[J]. Adv. Energy Mater., 2015,51500486. doi: 10.1002/aenm.201500486
Rao H.X., Sun W.H., Ye S.Y.. Solution-processed CuS NPs as an inorganic holeselective contact material for inverted planar perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2016,8:7800-7805. doi: 10.1021/acsami.5b12776
Yu Z.K., Liu W.Q., Fu W.F.. An aqueous solution-processed CuOx film as an anode buffer layer for efficient and stable organic solar cells[J]. J. Mater. Chem. A, 2016,4:5130-5136. doi: 10.1039/C6TA00909C
Nejand B.A., Ahmadi V., Gharibzadeh S., Shahverdi H.R.. Cuprous oxide as a potential low-cost hole-transport material for stable perovskite solar cells[J]. ChemSusChem, 2016,9:302-313. doi: 10.1002/cssc.201501273
Chatterjee S., Pal A.J.. Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures[J]. J. Phys. Chem. C, 2016,120:1428-1437. doi: 10.1021/acs.jpcc.5b11540
Yu W.L., Li F., Wang H.. Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells[J]. Nanoscale, 2016,8:6173-6179. doi: 10.1039/C5NR07758C
Zuo C.T., Ding L.M.. Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells[J]. Small, 2015,11:5528-5532. doi: 10.1002/smll.v11.41
Qian L., Yang J.H., Zhou R.J.. Hybrid polymer-CdSe solar cells with a ZnO nanoparticle buffer layer for improved efficiency and lifetime[J]. J. Mater. Chem., 2011,21:3814-3817. doi: 10.1039/c0jm03799k
Chen W.Y., Deng L.L., Dai S.M.. Low-costsolution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells[J]. J. Mater. Chem. A, 2015,3:19353-19359. doi: 10.1039/C5TA05286F
Liu T., Zuo L.J., Ye T.. Low temperature processed ITO-free perovskite solar cells without a hole transport layer[J]. RSC Adv., 2015,5:94752-94758. doi: 10.1039/C5RA20125J
Zuo L.J., Gu Z.W., Ye T.. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer[J]. J. Am. Chem. Soc., 2015,137:2674-2679. doi: 10.1021/ja512518r
Gu Z.W., Zuo L.J., Larsen-Olsen T.T.. Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates[J]. J. Mater. Chem. A, 2015,3:24254-24260. doi: 10.1039/C5TA07008B
Shao Z.P., Pan X., Zhang X.H.. Influence of structure and morphology of perovskite films on the performance of perovskite solar cells[J]. Acta Chim. Sin., 2015,73:267-271. doi: 10.6023/A14100721
Xinyu Yu , Fei Wu , Xianglang Sun , Linna Zhu , Baoyu Xia , Zhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
Rui Liu , Yue Yu , Lu Deng , Maoxia Xu , Haorong Ren , Wenjie Luo , Xudong Cai , Zhenyu Li , Jingyu Chen , Hua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545
Chi Li , Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
Zhuoer Cai , Yinan Zhang , Xiu-Ni Hua , Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426
Chengcheng Xie , Chengyi Xiao , Hongshuo Niu , Guitao Feng , Weiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849
Jian-Rong Li , Jieying Hu , Lai-Hon Chung , Jilong Zhou , Parijat Borah , Zhiqing Lin , Yuan-Hui Zhong , Hua-Qun Zhou , Xianghua Yang , Zhengtao Xu , Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Xiangyu Chen , Aihao Xu , Dong Wei , Fang Huang , Junjie Ma , Huibing He , Jing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
Qinming Wu , Xiangju Meng . New zeolites with extra-stable extra-large-pore. Chinese Journal of Structural Chemistry, 2024, 43(6): 100310-100310. doi: 10.1016/j.cjsc.2024.100310
Zhi Wang , Lingpeng Yan , Yelin Hao , Jingxia Zheng , Yongzhen Yang , Xuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430
Yuqing Wang , Zhemin Li , Qingjun Lu , Qizhao Li , Jiaxin Luo , Chengjie Li , Yongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277