Citation: Jie-Yu Wang, Jian Pei. BN-embedded aromatics for optoelectronic applications[J]. Chinese Chemical Letters, ;2016, 27(8): 1139-1146. doi: 10.1016/j.cclet.2016.06.014 shu

BN-embedded aromatics for optoelectronic applications

  • Corresponding author: Jie-Yu Wang, semiconductors.jieyuwang@pku.edu.cn
  • Received Date: 11 May 2016
    Revised Date: 30 May 2016
    Accepted Date: 1 June 2016
    Available Online: 14 August 2016

Figures(20)

  • The knowledge of azaborine chemistry is growing as an important branch in organic semiconductor materials. Specifically, BN-embedded aromatic compounds have attracted great attention due to their fascinating properties resulted from the replacement of CC unit with isoelectronic BN unit in aromatics. Though great insights have been provided into the synthetic chemistry and photophysical properties of BN-embedded aromatics, their applications in optoelectronic areas are still at a young stage. This short review summarizes the recent progress of BN-embedded aromatics with optoelectronic applications in organic field-effect transistors, organic light-emitting diodes, organic photovoltaics, stimuli-responsive luminescent devices, and chemical sensors.
  • 加载中
    1. [1]

      (a) K. Takimiya, I. Osaka, M. Nakano, π-Building blocks for organic electronics: revaluation of "inductive" and "resonance" effects of π-electron deficient units, Chem. Mater. 26(2014) 587-593; (b) W.P. Wu, Y.Q. Liu, D.B. Zhu, π-Conjugated molecules with fused rings for organic field-effect transistors: design, synthesis and applications, Chem. Soc. Rev. 39(2010) 1489-1502; (c) L.T. Dou, J.B. You, Z.R. Hong, et al., 25th Anniversary article: a decade of organic/polymeric photovoltaic research, Adv. Mater. 25(2013) 6642-6671; (d) H. Usta, A. Facchetti, T.J. Marks, n-Channel semiconductor materials design for organic complementary circuits, Acc. Chem. Res. 44(2011) 501-510; (e) J.G. Mei, Y. Diao, A.L. Appleton, L. Fang, Z.N. Bao, Integrated materials design of organic semiconductors for field-effect transistors, J. Am. Chem. Soc. 135(2013) 6724-6746; (f) P.M. Beaujuge, J.M.J. Fréchet, Molecular design and ordering effects in pfunctional materials for transistor and solar cell applications, J. Am. Chem. Soc. 133(2011) 20009-20029; (g) C.L. Wang, H.L. Dong, W.P. Hu, Y.Q. Liu, D.B. Zhu, Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics, Chem. Rev. 112(2012) 2208-2267; (h) Z.T. Huang, C.C. Fan, G.B. Xue, et al., Solution-grown aligned crystals of diketopyrrolopyrroles (DPP)-based small molecules: rough surfaces and relatively low charge mobility, Chin. Chem. Lett. 27(2016) 523-526. 

    2. [2]

      (a) W. Jiang, Y. Li, Z.H. Wang, Heteroarenes as high performance organic semiconductors, Chem. Soc. Rev. 42(2013) 6113-6127; (b) E.J. Wang, C.L. Wang, Q. Meng, et al., Syntheses of molecular wires containing redox center: reversible redox property and good energy level matching with Au electrode, Chin. Chem. Lett. 19(2008) 1285-1289; (c) B. Gao, Y. Li, H. Tian, Synthesis and near-infrared characteristics of novel perylenebisimide dyes bay-functionalized with naphthalimide chromophores, Chin. Chem. Lett. 18(2007) 283-286. 

    3. [3]

      (a) M. Mas-Torrent, M. Durkut, P. Hadley, X. Ribas, C. Rovira, High mobility of dithiophene-tetrathiafulvalene single-crystal organic field effect transistors, J. Am. Chem. Soc. 126(2004) 984-985; (b) H. Ebata, T. Izawa, E. Miyazaki, et al., Highly soluble[1] benzothieno[32-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors, J. Am. Chem. Soc. 129(2007) 15732-15733. 

    4. [4]

      M.J.S. Dewar, V.P. Kubba, R. Pettit. 624. New heteroaromatic compounds. Part I. 9-Aza-10-boraphenanthrene[J]. J. Chem. Soc, 1958:3073-3076. doi: 10.1039/jr9580003073

    5. [5]

      (a) M.J.S. Dewar, W.H. Poesche, New heteroaromatic compounds. XXI. Some tetracyclic systems 2, J. Org. Chem. 29(1964) 1757-1762; (b) M.J.S. Dewar, W.H. Poesche, New heteroaromaticcompounds. XVIII. Boron-containing analogs of benz[a]anthracene, J. Am. Chem. Soc. 85(1963) 2253-2256; (c) D.J.H. Emslie, W.E. Piers, M. Parvez, 2,2'-Diborabiphenyl: a Lewis acid analogue of 2,20-bipyridine, Angew. Chem. Int. Ed. 42(2003) 1252-1255; (d) C.A. Jaska, D.J.H. Emslie, M.J.D. Bosdet, et al., Triphenylene analogues with B2N2C2 cores: synthesis, structure, redox behavior, and photophysical properties, J. Am. Chem. Soc. 128(2006) 10885-10896.

    6. [6]

      (a) D.H. Knack, J.L. Marshall, G.P. Harlow, et al., BN/CC isosteric compounds as enzyme inhibitors: N- and B-ethyl-1,2-azaborine inhibit ethylbenzene hydroxylation as nonconvertible substrate analogues, Angew. Chem. Int. Ed. 52(2013) 2599-2601; (b) A.J. Ashe III, Aromatic borataheterocycles: surrogates for cyclopentadienyl in transition-metal complexes, Organometallics 28(2009) 4236-4248; (c) W. Luo, P.G. Campbell, L.N. Zakharov, S.Y. Liu, A single-component liquid-phase hydrogen storage material, J. Am. Chem. Soc. 133(2011) 19326-19329; (d) P.G. Campbell, L.N. Zakharov, D.J. Grant, D.A. Dixon, S.Y. Liu, Hydrogen storage by boron-nitrogen heterocycles: a simple route for spent fuel regeneration, J. Am. Chem. Soc. 132(2010) 3289-3291. 

    7. [7]

      (a) M.J.D. Bosdet, W.E. Piers, T.S. Sorensen, M. Parvez, 10a-Aza-10b-borapyrenes: heterocyclic analogues of pyrene with internalized BN moieties, Angew. Chem. Int. Ed. 46(2007) 4940-4943; (b) X.Y. Wang, D.C. Yang, F.D. Zhuang, et al., Postfunctionalization of BN-embedded polycyclic aromatic compounds for fine-tuning of their molecular properties, Chem. Eur. J. 21(2015) 8867-8873. 

    8. [8]

      (a) M.J.D. Bosdet, W.E. Piers, B-N as a C-C substitute in aromatic systems, Can. J. Chem. 87(2009) 8-29; (b) P.G. Campbell, A.J.V. Marwitz, S.Y. Liu, Recent advances in azaborinechemistry, Angew. Chem. Int. Ed. 51(2012) 6074-6092; (c) X.Y. Wang, J.Y. Wang, J. Pei, BN heterosuperbenzenes: synthesis and properties, Chem. Eur. J. 21(2015) 3528-3539.

    9. [9]

      G. Ulrich, R. Ziessel, A. Harriman. The chemistry of fluorescent bodipy dyes: versatility unsurpassed[J]. Angew. Chem. Int. Ed., 2008,47:1184-1201. doi: 10.1002/(ISSN)1521-3773

    10. [10]

      (a) D.M. Chen, Q. Qin, Z.B. Sun, Q. Peng, C.H. Zhao. Synthesis and properties of B,Nbridged p-terphenyls, Chem. Commun., 2014,50: 782-784; (b) D.M. Chen, S. Wang, H.X. Li, X.Z. Zhu, C.H. Zhao, Solid-state emissive B,Sbridged p-terphenyls: synthesis, properties, and utility as bifunctional fluorescent sensor for Hg2+ and F- ions[J]. Inorg. Chem., 2014,53:12532-12539. doi: 10.1021/ic502088k

    11. [11]

      T. Hatakeyama, S. Hashimoto, S. Seki, M. Nakamura. Synthesis of BN-fused polycyclic aromatics via tandemintramolecular electrophilic areneborylation[J]. J. Am. Chem. Soc., 2011,133:18614-18617. doi: 10.1021/ja208950c

    12. [12]

      T. Hatakeyama, S. Hashimoto, T. Oba, M. Nakamura. Azaboradibenzo[6] helicene: carrier inversion induced by helical homochirality[J]. J. Am. Chem. Soc., 2012,134:19600-19603. doi: 10.1021/ja310372f

    13. [13]

      X.Y. Wang, H.R. Lin, T. Lei. Azaborine compounds for organic field-effect transistors: efficient synthesis, remarkable stability, and BN dipole interactions[J]. Angew. Chem. Int. Ed., 2013,52:3117-3120. doi: 10.1002/anie.201209706

    14. [14]

      X.Y. Wang, F.D. Zhuang, X. Zhou. Influence of alkyl chain length on the solidstate properties and transistor performance of BN-substituted tetrathienonaphthalenes[J]. J. Mater. Chem. C, 2014,2:8152-8161. doi: 10.1039/C4TC01369G

    15. [15]

      X.Y. Wang, F.D. Zhuang, R.B. Wang. A straightforward strategy toward large BN-embedded π-systems: synthesis, structure, and optoelectronic properties of extended BN heterosuperbenzenes[J]. J. Am. Chem. Soc., 2014,136:3764-3767. doi: 10.1021/ja500117z

    16. [16]

      X.Y. Wang, F.D. Zhuang, J.Y. Wang, J. Pei. Incorporation of polycyclic azaborine compounds into polythiophene-type conjugated polymers for organic field-effect transistors[J]. Chem. Commun., 2015,51:17532-17535. doi: 10.1039/C5CC06927K

    17. [17]

      X.Y. Wang, F. Zhang, J. Liu. Ladder-type BN-embedded heteroacenes with blue emission[J]. Org. Lett., 2013,15:5714-5717. doi: 10.1021/ol402745r

    18. [18]

      (a) X.Y. Wang, F.D. Zhuang, X.C. Wang, et al., Synthesis, structure and properties of C3-symmetric heterosuperbenzene with three BN units, Chem. Commun. 51(2015) 4368-4371; (b) G. Li, W.W. Xiong, P.Y. Gu, et al., 15,9-Triaza-2,6,10-triphenylboracoronene: BN-embedded analogue of coronene, Org. Lett. 17(2015) 560-563. 

    19. [19]

      S. Hashimoto, T. Ikuta, K. Shiren. Triplet-energy control of polycyclic aromatic hydrocarbons by BN replacement: development of ambipolar host materials for phosphorescent organic light-emitting diodes[J]. Chem. Mater., 2014,26:6265-6271. doi: 10.1021/cm503102d

    20. [20]

      D.L. Crossley, I.A. Cade, E.R. Clark. Enhancing electron affinity and tuning band gap in donor-acceptor organic semiconductors bybenzothiadiazole directed C-H borylation[J]. Chem. Sci., 2015,6:5144-5151. doi: 10.1039/C5SC01800E

    21. [21]

      T. Hatakeyama, K. Shiren, K. Nakajima. Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO-LUMO separation by the multiple resonance effect[J]. Adv. Mater., 2016,28:2777-2781. doi: 10.1002/adma.v28.14

    22. [22]

      C.D. Dou, Z.C. Ding, Z.J. Zhang. Developing conjugated polymers with high electron affinity by replacing a C-C unit with a B←N unit[J]. Angew. Chem. Int. Ed., 2015,54:3648-3652. doi: 10.1002/anie.201411973

    23. [23]

      C.D. Dou, X.J. Long, Z.C. Ding. An electron-deficient building block based on the B←N unit: an electron acceptor for all-polymer solar cells[J]. Angew. Chem. Int. Ed., 2016,55:1436-1440. doi: 10.1002/anie.201508482

    24. [24]

      R.Y. Zhao, C.D. Dou, Z.Y. Xie, J. Liu, L.X. Wang. Polymer acceptor based on B←N units with enhanced electron mobility for efficient all-polymer solar cells[J]. Angew. Chem. Int. Ed., 2016,55:5313-5317. doi: 10.1002/anie.201601305

    25. [25]

      (a) J.S. Lu, S.B. Ko, N.R. Walters, et al., Formation of azaborines by photoelimination of B,N-heterocyclic compounds, Angew. Chem. Int. Ed. 52(2013) 4544-4548; (b) D.T. Yang, S.K. Mellerup, X. Wang, J.S. Lu, S.N. Wang, Reversible 1,1-hydroboration: boryl insertion into a C-N bond and competitive elimination of HBR2 or R-H, Angew. Chem. Int. Ed. 54(2015) 5498-5501; (c) Y.G. Shi, D.T. Yang, S.K. Mellerup, et al., 1,1-Hydroboration of fused azole-isoindole analogues as an approach for construction of B,N-heterocycles and azole-fused B,N-naphthalenes, Org. Lett. 18(2016) 1626-1629. 

    26. [26]

      S.N. Wang, D.T. Yang, J.S. Lu. In situ solid-state generation of (BN)2-pyrenes and electroluminescent devices[J]. Angew. Chem. Int. Ed., 2015,54:15074-15078. doi: 10.1002/anie.201507770

    27. [27]

      (a) Y.L. Rao, H. Amarne, L.D. Chen, et al., Photo- and thermal-induced multistructural transformation of 2-phenylazolyl chelate boron compounds, J. Am. Chem. Soc. 135(2013) 3407-3410;(b) Y.L. Rao, C. Hörl, H. Braunschweig, S.N. Wang, Reversible photochemical and thermal isomerization of azaboratabisnorcaradiene to azaborabenzotropilidene, Angew. Chem. Int. Ed. 53(2014) 9086-9089. 

    28. [28]

      M. Lepeltier, O. Lukoyanova, A. Jacobson, S. Jeeva, D.F. Perepichka. New azaborinethiopheneheteroacenes[J]. Chem. Commun., 2010,46:7007-7009. doi: 10.1039/c0cc01963a

    29. [29]

      (a) T. Agou, M. Sekine, J. Kobayashi, T. Kawashima, Multi-step detection of cyanide ion by a bis(dimesitylboryl)dibenzoazaborine, J. Organomet. Chem. 694(2009) 3833-3836; (b) T. Agou, M. Sekine, J. Kobayashi, T. Kawashima, Synthesis and reactivity of a bis(dimesitylboryl)azaborine and its fluoride sensing ability, Chem. Commun. (2009) 1894-1896. 

    30. [30]

      T. Agou, M. Sekine, J. Kobayashi, T. Kawashima. Detection of biologically important anions in aqueous media by dicationic azaborines bearing ammonio or phosphonio groups[J]. Chem. Eur. J., 2009,15:5056-5062. doi: 10.1002/chem.v15:20

  • 加载中
    1. [1]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    2. [2]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    3. [3]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    4. [4]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    5. [5]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    6. [6]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    7. [7]

      Kezuo DiJie WeiLijun DingZhiying ShaoJunling ShaXilong ZhouHuadong HengXujing FengKun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911

    8. [8]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    9. [9]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    10. [10]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    11. [11]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    12. [12]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    13. [13]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    14. [14]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    15. [15]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    16. [16]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    17. [17]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    18. [18]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    19. [19]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    20. [20]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

Metrics
  • PDF Downloads(10)
  • Abstract views(730)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return