Citation: Zuo-Bang Sun, Sheng-Yong Li, Zhi-Qiang Liu, Cui-Hua Zhao. Triarylborane π-electron systems with intramolecular charge-transfer transitions[J]. Chinese Chemical Letters, ;2016, 27(8): 1131-1138. doi: 10.1016/j.cclet.2016.06.007 shu

Triarylborane π-electron systems with intramolecular charge-transfer transitions

  • Corresponding author: Cui-Hua Zhao, chemistry.chzhao@sdu.edu.cn
  • Received Date: 28 April 2016
    Revised Date: 18 May 2016
    Accepted Date: 25 May 2016
    Available Online: 8 August 2016

Figures(13)

  • The incorporation of B element into p-conjugated system is an efficient strategy to tune the steric and electronic structure and thus optoelectronic properties of π-electron systems. The vacant p orbital on the tricoordinate B center makes it exhibit several electronic and steric features, such as electron-accepting ability through p-π* conjugation, the high Lewis acidity to coordinate with Lewis bases, as well as the steric bulk arising from the aryl substituent on the B center to get enough kinetic stability. As a result, the boryl group is a very unique electron acceptor. When an electron-donating amino group is present, the triarylboranes would display intense intramolecular charge transfer transitions, which lead to interesting optoelectronic properties and great utilities. This short review summarizes the recent progress in π-electron systems, which contain both B and N elements and thus display intramolecular charge-transfer transitions. The triarylboranes are introduced based on their structural features, including the linear π-system with boryl and amino groups at the terminal positions, the lateral borylsubstituted π-system with amino groups at the terminal positions, the biphenyl π-system with an amino and a boryl groups at o,o'-positions, nonconjugated U- and V-shaped π-system, macrocylcic π-system with B and N embedded in the ring, B,N-bridged ladder-type π-system, as well as the polycyclic π-system with B embedded in the center.
  • 加载中
    1. [1]

      (a) P.J. Grisdale, J.L.R. Williams, M.E. Glogowski, B.E. Babb, Boron photochemistry. Possible role of bridged intermediates in the photolysis of borate complexes, J. Org. Chem. 36(1971) 544-549; (b) J.C. Doty, B. Babb, P.J. Grisdale, M. Glogowski, J.L.R. Williams, Boron photochemistry: IX. Synthesis and fluorescent properties of dimesityl-phenylboranes, J. Organomet. Chem. 38(1972) 229-236. 

    2. [2]

      (a) W. Kaim, A. Schulz, p-Phenylenediboranes: mirror images of p-phenylenediamines, Angew. Chem. Int. Ed. 23(1984) 615-616; (b) J. Fiedler, S. Zališ, A. Klein, F.M. Hornung, W. Kaim, Electronic structure of π-conjugated redox systems with borane/borataalkene end groups, Inorg. Chem. 35(1996) 3039-3043. 

    3. [3]

      (a) C.D. Entwistle, T.B. Marder, Boron chemistry lights the way: optical properties of molecular and polymeric systems, Angew. Chem. Int. Ed. 41(2002) 2927-2931; (b) C.D. Entwistle, T.B. Marder, Applications of three-coordinate organoboron compounds andpolymers in optoelectronics, Chem. Mater. 16(2004) 4574-4585; (c) F. Jäkle, Lewis acidic organoboron polymers, Coord. Chem. Rev. 250(2006) 1107-1121; (d) S. Yamaguchi, A. Wakamiya, Boron as a key component for new π-electron materials, Pure. Appl. Chem. 78(2006) 1413-1424; (e) F. Jäkle, Advances in the synthesis of organoborane polymers for optical, electronic, and sensory applications, Chem. Rev. 110(2010) 3985-4022; (f) C.R. Wade, A.E.J. Broomsgrove, S. Aldridge, F.P. Gabbaï, Fluoride ion complexation and sensing using organoboron compounds, Chem. Rev. 110(2010) 3958-3984; (g) Z.M. Hudson, S.N. Wang, Metal-containing triarylboron compounds for optoelectronic applications, Dalton Trans. 40(2011) 7805-7816; (h) C.H. Zhao, Y.H. Zhao, J.M. Lin, Optoelectronic materials of organoboron π-conjugated systems, Prog. Chem. 21(2009) 2605-2612. 

    4. [4]

      (a) Z.Yuan,J.C. Collings, N.J.Taylor, et al., Linearandnonlinear optical properties of three-coordinate organoboron compounds, J. Solid State Chem. 154(2000) 5-12; (b) Z. Yuan, C.D. Entwistle, J.C. Collings, et al., Synthesis, crystal structures, linear and nonlinear optical properties, and theoretical studies of (p-R-phenyl)-,(p-Rphenylethynyl)-, and (E)-[2-(p-R-Phenyl) ethenyl] dimesitylboranes and related compounds, Chem. Eur. J. 12(2006) 2758-2771; (c) Z. Yuan, N.J. Taylor, T.B. Marder, et al., Three coordinate phosphorus and boron as π-donor and p-acceptor moieties respectively, in conjugated organic molecules fornonlinearoptics:crystalandmolecular structures ofE-Ph-CH=CH-B(mes)2, E-4-MeO-C6H4-CH=CH-B(mes)2, and E-Ph2P-CH=CH-B(mes)2[mes=2,4,6-Me3C6H2], J. Chem. Soc. Chem. Commun. (1990) 1489-1492; (d) Z. Yuan, N.J. Taylor, R. Ramachandran, T.B. Marder, Third-order nonlinear optical properties of organoboron compounds: molecular structures and second hyperpolarizabilities, Appl. Organomet. Chem. 10(1996) 305-316; (e) Z. Yuan, N.J. Taylor, Y. Sun, et al., Synthesis and second-order nonlinear optical properties of three-coordinate organoboranes with diphenylphosphino and ferrocenyl groups as electron donors: crystal and molecular structures of (E)-D-CH=CHB(mes)2 and D-C=C-B(mes)2(D=P(C6H52, (η-C5H5) Fe(η-C5H4); mes=2, 4, 6-(CH3)3C6H2], J. Organomet. Chem. 449(1993) 27-37. 

    5. [5]

      (a) M. Lequan, R.M. Lequan, K.C. Ching. Trivalent boron as acceptor chromophore in asymmetrically substituted 4,40-biphenyl and azobenzene for non-linear optics, J. Mater. Chem., 1991,1: 997-999; (b) C. Branger, M. Lequan, R.M. Lequan, M. Barzoukas, A. Fort, Boron derivatives containing a bithiophene bridge as new materials for non-linear optics, J. Mater. Chem., 1996,6: 555-558; (c) C. Branger, M. Lequan, R.M. Lequan, M. Large, F. Kajzar, Polyurethanes containing boron chromophores as sidechains for nonlinear optics[J]. Chem. Phys. Lett., 1997,272:265-270. doi: 10.1016/S0009-2614(97)88019-0

    6. [6]

      (a) D.X. Cao, Z.Q. Liu, Q. Fang, et al., Blue two-photon excited fluorescence of several D-π-D, A-π-A, and D-π-A compounds featuring dimesitylboryl acceptor, J. Organomet. Chem. 689(2004) 2201-2206; (b) Z.Q. Liu, Q. Fang, D. Wang, et al., Trivalent boron as acceptor in D-π-A chromophores: synthesis, structure and fluorescence following single-and twophoton excitation, Chem. Commun. (2002) 2900-2901. 

    7. [7]

      J.C. Collings, S.Y. Poon, C. Le Droumaguet. The Synthesis and one-and two-Photon optical properties of dipolar, quadrupolar and octupolar donor-acceptor molecules containing dimesitylboryl groups[J]. Chem. Eur. J., 2009,15:198-208. doi: 10.1002/chem.v15:1

    8. [8]

      (a) W.L. Jia, X.D. Feng, D.R. Bai, et al., Mes2B (p-4, 4'-biphenyl-NPh(1-naphthyl)): a multifunctional molecule for electroluminescent devices, Chem. Mater. 17(2005) 164-170; (b) W.L. Jia, M.J. Moran, Y.Y. Yuan, Z.H. Lu, S.N. Wang, (1-Naphthyl) phenylamino functionalized three-coordinate organoboron compounds: syntheses, structures, and applications in OLEDs, J. Mater. Chem. 15(2005) 3326-3333; (c) W.L. Jia, D.R. Bai, T. McCormick, et al., Three-coordinate organoboron compounds BAr2R (Ar=Mesityl, R=7-Azaindolyl-or 2, 2'-Dipyridylamino-functionalized aryl or thienyl) for electroluminescent devices and supramolecular assembly, Chem. Eur. J. 10(2004) 994-1006; (d) W.L. Jia, D.T. Song, S.N. Wang, Blue luminescent three-coordinate organoboron compounds with a 2, 2'-dipyridylamino functional group, J. Org. Chem. 68(2003) 701-705; (e) F.H. Li, W.L. Jia, S.N. Wang, Y.Q. Zhao, Z.H. Lu, Blue organic light-emitting diodes based on Mes2B[p-4, 4'-biphenyl-NPh (1-naphthyl)], J. Appl. Phys. 103(2008) 034509. 

    9. [9]

      S.L. Lin, L.H. Chan, R.H. Lee. Highly efficient carbazole-π-dimesitylborane bipolar fluorophores for nondoped blue organic light-emitting diodes[J]. Adv. Mater., 2008,20:3947-3952. doi: 10.1002/adma.v20:20

    10. [10]

      Y. Shirota, M. Kinoshita, T. Noda, K. Okumoto, T. Ohara. A novel class of emitting amorphous molecular materials as bipolar radical formants: 2-{4-[Bis(4-methylphenyl)amino]phenyl}-5-(dimesitylboryl)thiophene and 2-{4-[Bis(9,9-dimethylfluorenyl)amino]phenyl}-5-(dimesitylboryl)thiophene[J]. J. Am. Chem. Soc., 2000,122:11021-11022. doi: 10.1021/ja0023332

    11. [11]

      K. Suzuki, S. Kubo, K. Shizu. Triarylboron-based fluorescent organic lightemitting diodes with external quantum efficiencies exceeding 20%[J]. Angew. Chem. Int. Ed., 2015,54:15231-15235. doi: 10.1002/anie.201508270

    12. [12]

      (a) S. Yamaguchi, T. Shirasaka, S. Akiyama, K. Tamao, Dibenzoborole-containing, π-Electron systems: remarkable fluorescence change based on the "on/off" control of the pπ* conjugation, J. Am. Chem. Soc. 124(2002) 8816-8817; (b) Y. Kubo, M. Yamamoto, M. Ikeda, et al., A colorimetric and ratiometric fluorescent chemosensor with three emission changes: fluoride ion sensing by a triarylborane-porphyrin conjugate, Angew. Chem. Int. Ed. 42(2003) 2036-2040. 

    13. [13]

      (a) S. Sole, F.P. Gabbai, A bidentate borane as colorimetric fluoride ion sensor, Chem. Commun. 35(2004) 1284-1285; (b) M. Melaimi, F.P. Gabbaï, A heteronuclear bidentate lewis acid as a phosphorescent fluoride sensor, J. Am. Chem. Soc. 127(2005) 9680-9681; (c) C.W. Chiu, F.P. Gabbaï, Fluoride ion capture from water with a cationic borane, J. Am. Chem. Soc. 128(2006) 14248-14249; (d) M.H. Lee, T. Agou, J. Kobayashi, T. Kawashima, F.P. Gabbaï, Fluoride ion complexation by a cationic borane in aqueous solution, Chem. Commun. (2007) 1133-1135. 

    14. [14]

      (a) A. Sundararaman, M. Victor, R. Varughese, F. Jäkle, A family of main-chain polymeric Lewis acids: synthesis and fluorescent sensing properties of boronmodified polythiophenes, J. Am. Chem. Soc. 127(2005) 13748-13749; (b) K. Parab, K. Venkatasubbaiah, F. Jäkle, Luminescent triarylborane-functionalized polystyrene: synthesis, photophysical characterization, and anion-binding studies, J. Am. Chem. Soc. 128(2006) 12879-12885; (c) H.Y. Li, A. Sundararaman, K. Venkatasubbaiah, F. Jäkle, Organoborane acceptor-substituted polythiophene via side-group borylation, J. Am. Chem. Soc. 129(2007) 5792-5793. 

    15. [15]

      (a) G.L. Fu, H. Pan, Y.H. Zhao, C.H. Zhao, Solid-state emissive triarylborane-based BODIPY dyes: photophysical properties and fluorescent sensing for fluoride and cyanide ions, Org. Biomol. Chem. 9(2011) 8141-8146; (b) Y.H. Zhao, H. Pan, G.L. Fu, J.M. Lin, C.H. Zhao, A highly emissive cruciform triarylborane as a ratiometric and solid state fluorescence sensor for fluoride ions, Tetrahedron Lett. 52(2011) 3832-3835. 

    16. [16]

      (a) Z.L. Zhang, R.M. Edkins, J. Nitsch, et al., Optical and electronic properties of airstable organoboron compounds with strongly electron-accepting bis (fluoromesityl) boryl groups, Chem. Sci. 6(2015) 308-321; (b) Z.L. Zhang, R.M. Edkins, J. Nitsch, et al., D-π-A triarylboron compounds with tunable push-pull character achieved by modification of both the donor and acceptor moieties, Chem. Eur. J. 21(2015) 177-190. 

    17. [17]

      (a) C.H. Zhao, A. Wakamiya, Y. Inukai, S. Yamaguchi, Highly emissive organic solids containing 2, 5-diboryl-1,4-phenylene unit, J. Am. Chem. Soc. 128(2006) 15934-15935; (b) C.H. Zhao, A. Wakamiya, S. Yamaguchi, Highly emissive poly(aryleneethynylene)s containing 2, 5-diboryl-1, 4-phenylene as a building unit, Macromolecules 40(2007) 3898-3900; (c) C.H. Zhao, E. Sakuda, A. Wakamiya, S. Yamaguchi, Highly emissive diborylphenylene-containing bis (phenylethynyl) benzenes: structure-photophysical property correlations and fluoride ion sensing, Chem. Eur. J. 15(2009) 10603- 10612; (d) A. Wakamiya, K. Mori, S. Yamaguchi, 3-Boryl-2, 2'-bithiophene as a versatile core skeleton for full-color highly emissive organic solids, Angew. Chem. Int. Ed. 46(2007) 4273-4276. 

    18. [18]

      G.L.Fu , H.Y. Zhang, Y.Q. Yan, C.H. Zhao. p-Quaterphenyls laterally substituted with a dimesitylboryl group: a promising class of solid-state blue emitters[J]. J. Org. Chem., 2012,77:1983-1990. doi: 10.1021/jo202574n

    19. [19]

      (a) H. Pan, G.L. Fu, Y.H. Zhao, C.H. Zhao, Through-space charge-transfer emitting biphenyls containing a boryl and an amino group at the o,o'-positions, Org. Lett. 13(2011) 4830-4833; (b) C. Wang, Q.W. Xu, W.N. Zhang, Q. Peng, C.H. Zhao, Charge-transfer emission in organoboron-based biphenyls: effect of substitution position and conformation, J. Org. Chem. 80(2015) 10914-10924; (c) Y.Q. Yan, Y.B. Li, J.W. Wang, C.H. Zhao, Effect of the substitution pattern on the intramolecular charge-transfer emissions in organoboron-based biphenyls, diphenylacetylenes, and stilbenes, Chem. Asian. J. 8(2013) 3164-3176; (d) C. Wang, J. Jia, W.N. Zhang, H.Y. Zhang, C.H. Zhao, Triarylboranes with a 2-dimesitylboryl-2'-(N,N-dimethylamino) biphenyl core unit: structure-property correlations and sensing abilities to discriminate between F- and CN- ions, Chem. Eur. J. 20(2014) 16590-16601; (e) Q.W. Xu, C. Wang, Z.B. Sun, C.H. Zhao, A highly selective ratiometric bifunctional fluorescence probe for Hg2+ and F- ions, Org. Biomol. Chem. 13(2015) 3032-3039. 

    20. [20]

      (a) X.Y. Liu, D.R. Bai, S.N. Wang, Charge-transfer emission in nonplanar threecoordinate organoboron compounds for fluorescent sensing of fluoride, Angew. Chem. Int. Ed. 45(2006) 5475-5478; (b) Z.M. Hudson, X.Y. Liu, S.N. Wang, Switchable three-state fluorescence of a nonconjugated donor-acceptor triarylborane, Org. Lett. 13(2011) 300-303; (c) D.R. Bai, X.Y. Liu, S. Wang, Charge-transfer emission involving three-coordinate organoboron: V-shape versus U-shape and impact of the spacer on dual emission and fluorescent sensing, Chem. Eur. J. 13(2007) 5713-5723. 

    21. [21]

      (a) P.K. Chen, F. Jäkle, Highly luminescent, electron-deficient bora-cyclophanes, J. Am. Chem. Soc. 133(2011) 20142-20145; (b) P.K. Chen, R.A. Lalancette, F. Jäkle, p-Expanded borazine: an ambipolar conjugated B-π-N macrocycle, Angew. Chem. Int. Ed. 51(2012) 7994-7998; (c) P.K. Chen, X.D. Yin, N. Baser-Kirazli, F. Jäkle, Versatile design principles for facile access to unstrained conjugated organoborane macrocycles, Angew. Chem. Int. Ed. 54(2015) 10768-10772. 

    22. [22]

      (a) D.M. Chen, Q. Qin, Z.B. Sun, Q. Peng, C.H. Zhao, Synthesis and properties of B,Nbridged p-terphenyls, Chem. Commun. 50(2014) 782-784; (b) D.M. Chen, S. Wang, H.X. Li, X.Z. Zhu, C.H. Zhao, Solid-state emissive B,Sbridged p-terphenyls: synthesis, properties, and utility as bifunctional fluorescent sensor for Hg2+ and F- ions, Inorg. Chem 53(2014) 12532-12539.

    23. [23]

      (a) Z.G. Zhou, A. Wakamiya, T. Kushida, S. Yamaguchi, Planarized triarylboranes: stabilization by structural constraint and their plane-to-bowl conversion, J. Am. Chem. Soc. 134(2012) 4529-4532; (b) C.D. Dou, S. Saito, K. Matsuo, I. Hisaki, S. Yamaguchi, A boron-containing PAH as a substructure of boron-doped graphene, Angew. Chem. Int. Ed. 51(2012) 12206-12210; (c) S. Saito, K. Matsuo, S. Yamaguchi, Polycyclic, π-Electron system with boron at its center, J. Am. Chem. Soc. 134(2012) 9130-9133. 

    24. [24]

      T. Hatakeyama, K. Shiren, K. Nakajima. Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO-LUMO separation by the multiple resonance effect[J]. Adv. Mater., 2016,28:2777-2781. doi: 10.1002/adma.v28.14

    25. [25]

      (a) Y.N. Hong, J.W.Y. Lam, B.Z. Tang, Aggregation-induced emission, Chem. Soc. Rev. 40(2011) 5361-5388; (b) M. Shimizu, T. Hiyama, Organic fluorophores exhibiting highly efficient photoluminescence in the solid state, Chem. Asian. J. 5(2010) 1516-1531; (c) S.P.Anthony,Organicsolid-statefluorescence:strategiesforgeneratingswitchable and tunable fluorescent materials, ChemPlusChem 77(2012) 518-531. 

    26. [26]

      (a) B. Gong, Hollow Crescents, Helices, and Macrocycles from enforced folding and folding-assisted macrocyclization, Acc. Chem. Res. 41(2008) 1376-1386; (b) D. Ramaiah, P.P. Neelakandan, A.K. Nair, R.R. Avirah, Functional cyclophanes: promising hosts for optical biomolecular recognition, Chem. Soc. Rev. 39(2010) 4158-4168. 

    27. [27]

      A. Fukazawa, S. Yamaguchi. Ladder π-conjugated materials containing maingroup elements[J]. Chem. Asian. J., 2009,4:1386-1400. doi: 10.1002/asia.v4:9

    28. [28]

      (a) H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Highly efficient organic light-emitting diodes from delayed fluorescence, Nature 492(2012) 234-238; (b) Y. Tao, K. Yuan, T. Chen, et al., Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics, Adv. Mater. 26(2014) 7931-7958. 

  • 加载中
    1. [1]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    2. [2]

      Hongping ZhaoWeiming Yuan . Merging catalytic electron donor-acceptor complex and copper catalysis: Enantioselective radical carbocyanation of alkenes. Chinese Chemical Letters, 2025, 36(10): 110894-. doi: 10.1016/j.cclet.2025.110894

    3. [3]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    4. [4]

      Manlin LuSheng LiaoJiayu LiZidong YuNingjiu ZhaoZuoti XieShunli ChenLi DangMing-De Li . Face-to-face π-π interactions and electron communication boosting efficient reverse intersystem crossing in through-space charge transfer molecules. Chinese Chemical Letters, 2025, 36(6): 110066-. doi: 10.1016/j.cclet.2024.110066

    5. [5]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    6. [6]

      Longjian LiPing ZhangYongchong YuReyila TuerhongXiaoping SuLijuan HanEnzhou LiuJizhou Jiang . Electron trap-induced charge accumulation and surface reaction kinetics synergistically enhance overall nitrogen photofixation. Chinese Chemical Letters, 2025, 36(8): 111118-. doi: 10.1016/j.cclet.2025.111118

    7. [7]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    8. [8]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    9. [9]

      Huifang MaTao XuSaifei YuanShujuan LiJiayao WangYuping ZhangHao RenShulai Lei . Interlayer interactions and electron transfer effects on sodium adsorption on 2D heterostructures surfaces. Chinese Chemical Letters, 2025, 36(8): 110219-. doi: 10.1016/j.cclet.2024.110219

    10. [10]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    11. [11]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    12. [12]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    13. [13]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    14. [14]

      Siyang XueChen ChengJieqiong KangKaixuan ZhengAdela Jing LiRenli Yin . Oxygen vacancies-rich BiOBr bridged direct electron transfer with peroxymonosulfate for integrating superoxide radical and singlet oxygen on selective pollutants degradation. Chinese Chemical Letters, 2025, 36(10): 110776-. doi: 10.1016/j.cclet.2024.110776

    15. [15]

      Wenrui JiaChenghuan QiaoDongfang ZhaoJuanshan DuYaohua WuYongqi LiangQinglian WuXiaochi FengHuazhe WangWanqian Guo . Insight into nitrogen-doped biochar prepared from Chinese medicine compound residue for peracetic acid activation in sulfamethoxazole degradation: Electron transfer mechanism. Chinese Chemical Letters, 2025, 36(11): 110886-. doi: 10.1016/j.cclet.2025.110886

    16. [16]

      Shuqi ChenCankun ZhangXiaonuo DongHui-Jun ZhangJianbin Lin . Synthesis and photophysical properties of alternating donor-acceptor conjugated nanorings. Chinese Chemical Letters, 2025, 36(6): 110354-. doi: 10.1016/j.cclet.2024.110354

    17. [17]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    18. [18]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    19. [19]

      Yuwei LiuYihui ZhuWeijian DuanYizhuo YangHaorui TuoChunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347

    20. [20]

      Zhaoyue LüTiantian ChaiYichao JinXiao WangYe ZouLijiang ZhangJiankang FengMengtong ZhangShuo WangChichong LuGuofan Jin . Asymmetrical carbazole-benzonitrile-based TADF emitters designed by alternate donor-acceptor strategy. Chinese Chemical Letters, 2025, 36(6): 110817-. doi: 10.1016/j.cclet.2025.110817

Metrics
  • PDF Downloads(6)
  • Abstract views(1411)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return