Citation: Xu Yue-Ling, Gao Qiang, Zhao Meng, Zhang Huan-Jun, Zhang Ying-Hui, Chang Ze. Impact of the flexibility of pillar linkers on the structure and CO2 adsorption property of "pillar-layered" MOFs[J]. Chinese Chemical Letters, ;2017, 28(1): 55-59. doi: 10.1016/j.cclet.2016.06.006 shu

Impact of the flexibility of pillar linkers on the structure and CO2 adsorption property of "pillar-layered" MOFs

  • Corresponding author: Zhang Ying-Hui, zhangyhi@nankai.edu.cn
  • Received Date: 28 April 2016
    Revised Date: 17 May 2016
    Accepted Date: 25 May 2016
    Available Online: 8 January 2016

Figures(5)

  • A new metal-organic framework {[Zn2(bpta)(bpy-ee)(H2O)2]·x solve}n (1) (H4bpta=biphenyl-2, 2', 6, 6'-tetracarboxylic acid and bpy-ee=1, 2-bis (4-pyridyl) ethylene) has been obtained under hydrothermal condition, and structurally characterized by single-crystal X-ray diffraction. Complex 1 reveals a threedimensional (3D) "pillar-layered" framework with non-flexible linker, in which some different structure characters can be found compared to that of some related other "pillar-layered" MOFs based on flexible pillar linkers. It demonstrates the impact of the flexibility of pillar linker on the final structure in this system. In addition, the selective CO2 adsorption performance of 1 was also investigated.
  • 加载中
    1. [1]

      Suh M.P., Park H.J., Prasad T.K., Lim D.W.. Hydrogen storage in metal-organic frameworks[J]. Chem. Rev., 2011,112:782-835.

    2. [2]

      Nagarkar S.S., Chaudhari A.K., Ghosh S.K.. Selective CO2 adsorption in a robust and water-stable porous coordination polymer with new network topology[J]. Inorg. Chem., 2012,51:572-576. doi: 10.1021/ic202102m

    3. [3]

      Du M., Li C.P., Chen M.. Divergent kinetic and thermodynamic hydration of a porous Cu (Ⅱ) coordination polymer with exclusive CO2 sorption selectivity[J]. J. Am. Chem. Soc., 2014,136:10906-10909. doi: 10.1021/ja506357n

    4. [4]

      Liu D., Lang J.P., Abrahams B.F.. Highly efficient separation of a solid mixture of naphthalene and anthracene by a reusable porous metal-organic framework through a single-crystal-to-single-crystal transformation[J]. J. Am. Chem. Soc., 2011,133:11042-11045. doi: 10.1021/ja203053y

    5. [5]

      Lee J., Farha O.K., Roberts J.. Metal-organic framework materials as catalysts[J]. Chem. Soc. Rev., 2009,38:1450-1459. doi: 10.1039/b807080f

    6. [6]

      Liu D., Ren Z.G., Li H.X.. Single-crystal-to-single-crystal transformations of two three-dimensional coordination polymers through regioselective[2+2] photodimerization reactions[J]. Angew. Chem. Int. Ed., 2010,49:4767-4770. doi: 10.1002/anie.201001551

    7. [7]

      Liu D., Wang H.F., Abrahams B.F., Lang J.P.. Single-crystal-to-single-crystal transformation of a two-dimensional coordination polymer through highly selective[2+2] photodimerization of a conjugated dialkene[J]. Chem. Commun., 2014,50:3173-3175. doi: 10.1039/c3cc49749f

    8. [8]

      Zeng M.H., Zhang W.X., Zhang X.Z., Chen X.M.. Spin Canting and Metamagnetism in a 3D homometallic molecular material constructed by interpenetration of two kinds of Cobalt (Ⅱ)-coordination-polymer sheets[J]. Angew. Chem. Int. Ed., 2005,44:3079-3082. doi: 10.1002/(ISSN)1521-3773

    9. [9]

      Zhang J., Chen S.M., Valle H.. Manganese and magnesium homochiral materials:decoration of honeycomb channels with homochiral chains[J]. J. Am. Chem. Soc., 2007,129:14168-14169. doi: 10.1021/ja076532y

    10. [10]

      Allendorf M.D., Bauer C.A., Bhakta R.K., Houk R.J.T.. Luminescent metal-organic frameworks[J]. Chem. Soc. Rev., 2009,38:1330-1352. doi: 10.1039/b802352m

    11. [11]

      Wang Z.X., Chen M., Liu C.S.. A versatile Al-based metal-organic framework with high physicochemical stability[J]. Chem. Eur. J., 2015,21:17215-17219. doi: 10.1002/chem.201502615

    12. [12]

      Zheng S.T., Yang G.Y.. The first polyoxometalate-templated four-fold interpenetrated coordination polymer with new topology and ferroelectricity[J]. Dalton. Trans., 2010,39:700-703. doi: 10.1039/B916462F

    13. [13]

      Wang F., Zhang J., Chen S.M.. New (3, 4)-connected intrinsically chiral topology observed in a homochiral coordination polymer from achiral precursors[J]. Cryst. Eng. Commun., 2009,11:1526-1528. doi: 10.1039/b907092n

    14. [14]

      Yaghi O.M., Li H.L., Davis C., Richardson D., Groy T.L.. Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids[J]. Acc. Chem. Res., 1998,31:474-484. doi: 10.1021/ar970151f

    15. [15]

      Feng X., Wen Y.H., Lan Y.Z.. Multifunctionalzinc (Ⅱ) urocanate with rare fivefold interpenetrating diamondoid network[J]. Inorg. Chem. Commun., 2009,12:89-91. doi: 10.1016/j.inoche.2008.11.017

    16. [16]

      Liu L., Huang S.P., Yang G.D.. Zn[Htma][ddm]:an interesting threedimensional chiral nonlinear optical-active zinc-trimesate framework[J]. Cryst. Growth Des., 2010,10:930-936. doi: 10.1021/cg901259e

    17. [17]

      Yaghi O.M., O'Keeffe M., Ockwig N.W.. Reticular synthesis and the design of new materials[J]. Nature, 2003,423:705-714. doi: 10.1038/nature01650

    18. [18]

      Kitagawa S., Kitaura R., Noro S.I.. Functional porous coordination polymers[J]. Angew. Chem. Int. Ed., 2004,43:2334-2375. doi: 10.1002/(ISSN)1521-3773

    19. [19]

      Wang X.L., Li J., Tian A.X.. Assembly of three Ni-bis (triazole) complexes by exerting the linkage and template roles of Keggin anions[J]. Cryst. Growth Des., 2011,11:3456-3462. doi: 10.1021/cg200261j

    20. [20]

      Li C.H., Huang K.L., Dou J.M.. An interesting six-connected 3D nanowater framework constructed from turbine-type (H2O)18 clusters based on a Mn (Ⅲ) complex[J]. Cryst. Growth Des., 2008,8:3141-3143. doi: 10.1021/cg800504a

    21. [21]

      Li J.R., Tao Y., Yu Q.. Selective gas adsorption and unique structural topology of a highly stable guest-free zeolite-type MOF material with N-rich chiral open channels[J]. Chem. Eur. J., 2008,14:2771-2776. doi: 10.1002/(ISSN)1521-3765

    22. [22]

      He J.H., Zhang Y.T., Pan Q.H.. Three metal-organic frameworks prepared from mixed solvents of DMF and HAc[J]. Micropor. Mesopor. Mat., 2006,90:145-152. doi: 10.1016/j.micromeso.2005.11.049

    23. [23]

      Li H.Y., Mu B., Wang X.L., Tian A.X.. Three copper (Ⅱ) complexes connected through tetradentate carboxylate linkers and bidentate N-heterocyclic ligands:from 3-D MOF to 1-D chain[J]. J. Organ. Chem., 2012,702:36-44. doi: 10.1016/j.jorganchem.2011.12.017

    24. [24]

      Hu F.L., Wang S.L., Wu B.. Ligand geometry-directed assembly of seven entangled coordination polymers[J]. Cryst. Eng. Commun., 2014,16:6354-6363.

    25. [25]

      Hu F.L., Wu W., Liang P.. Construction of entangled coordination polymers based on M2+ ions, 4, 4'-{[1, 2-phenylenebis (methylene)] bis (oxy)} dibenzoate and different N-donor ligands[J]. Cryst. Growth Des., 2013,13:5050-5061. doi: 10.1021/cg401212s

    26. [26]

      Hu F.L., Mi Y., Gu Y.Q.. Structure diversities of ten entangled coordination polymers assembled from reactions of Co (Ⅱ) or Ni (Ⅱ) salts with 5-(pyridin-4-yl) isophthalic acid in the absence or presence of auxiliary N-donor ligands[J]. Cryst. Eng. Commun., 2013,15:9553-9561. doi: 10.1039/c3ce41059e

    27. [27]

      Liu D., Chang Y.J., Lang J.P.. Ligand geometry-driven formation of different coordination polymers from Zn (NO3)2, 1, 4-bpeb and phenylenediacetic acids[J]. Cryst. Eng. Commun., 2011,13:1851-1857. doi: 10.1039/C0CE00575D

    28. [28]

      Chen B.L., Xiang S.C., Qian G.D.. Metal organic frameworks with functional pores for recognition of small molecules[J]. Acc. Chem. Res., 2010,43:1115-1124. doi: 10.1021/ar100023y

    29. [29]

      Chen B.L., Zhao X.B., Putkham A.. Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal organic framework material[J]. J. Am. Chem. Soc., 2008,130:6411-6423. doi: 10.1021/ja710144k

    30. [30]

      Barrio J.P., Rebily J.N., Carter B.. Control of porosity geometry in amino acid derived nanoporous materials[J]. Chem. Eur. J., 2008,14:4521-4532. doi: 10.1002/(ISSN)1521-3765

    31. [31]

      Yao Q.X., Pan L., Jin X.H.. Bipyridinium array-type porous polymer displaying hydrogen storage, charge-transfer-type guest inclusion, and tunable magnetic properties[J]. Chem. Eur. J., 2009,15:11890-11897. doi: 10.1002/chem.v15:44

    32. [32]

      Chang Z., Zhang D.S., Chen Q.. Rational construction of 3D pillared metal-organic frameworks:synthesis, structures, and hydrogen adsorption properties[J]. Inorg. Chem., 2011,50:7555-7562. doi: 10.1021/ic2004485

    33. [33]

      Xuan Z.H., Zhang D.S., Chang Z., Hu T.L., Bu X.H.. Targeted structure modulation of "Pillar-Layered" metal-organic frameworks for CO2 capture[J]. Inorg. Chem., 2014,53:8985-8990. doi: 10.1021/ic500905z

    34. [34]

      Liu Q.C., Wen K., Zhang Z.F.. Pd (Ⅱ)-catalyzed asymmetric Wacker-type cyclization for the preparation of 2-vinylchroman derivatives with biphenyl tetraoxazoline ligands[J]. Tetrahedron, 2012,68:5209-5215. doi: 10.1016/j.tet.2012.03.077

    35. [35]

      Spek A.L.. Single-crystal structure validation with the program PLATON[J]. J. Appl. Crystallogr., 2003,36:7-13. doi: 10.1107/S0021889802022112

    36. [36]

      Zhou T.T., Xuan Z.H., Zhang D.S.. A unique "cage-in-cage" metal-organic framework based on nested cages from interpenetrated networks[J]. Cryst. Eng. Commun., 2015,17:5884-5888. doi: 10.1039/C5CE01047K

    37. [37]

      Zhai Q.G., Lin Q.P., Wu T.. High CO2 and H2 uptake in an anionic porous framework with amino-decorated polyhedral cages[J]. Chem. Mater., 2012,24:2624-2626. doi: 10.1021/cm301322b

    38. [38]

      Yang Q.Y., Zhong C.L., Chen J.F.. Computational study of CO2 storage in metalorganic frameworks[J]. J. Phys. Chem. C, 2008,112:1562-1569. doi: 10.1021/jp077387d

  • 加载中
    1. [1]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    2. [2]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

    3. [3]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    4. [4]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    5. [5]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    6. [6]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    7. [7]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    8. [8]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    9. [9]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    10. [10]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    11. [11]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    12. [12]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    13. [13]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    14. [14]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    15. [15]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    16. [16]

      Lei ZhuHai-Ruo LiYi-Ning MaoRuiying LiuBo ZhangJing ChenWengui XuLibo ZhangCheng-Peng Li . A four-fold interpenetrated MOF for efficient perrhenate/pertechnetate removal from alkaline nuclear effluents. Chinese Chemical Letters, 2024, 35(12): 109921-. doi: 10.1016/j.cclet.2024.109921

    17. [17]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    18. [18]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    19. [19]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    20. [20]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

Metrics
  • PDF Downloads(1)
  • Abstract views(667)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return