Citation: Zhao Shu-Yang, Wang Sheng-Ping, Zhao Yu-Jun, Ma Xin-Bin. An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over well-shaped CeO2[J]. Chinese Chemical Letters, ;2017, 28(1): 65-69. doi: 10.1016/j.cclet.2016.06.003 shu

An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over well-shaped CeO2

  • Corresponding author: Wang Sheng-Ping, spwang@tju.edu.cn
  • Received Date: 27 April 2016
    Revised Date: 14 May 2016
    Accepted Date: 23 May 2016
    Available Online: 8 January 2016

Figures(5)

  • The mechanism of dimethyl carbonate (DMC) formation from CO2 and methanol is investigated using three well-shaped CeO2 catalysts, nanorod, nanocube and octahedron, which are packed with different crystal planes. In situ Fourier Transform Infrared Spectroscopy (FTIR) is employed to probe each reaction step in the DMC synthesis. The number of -OH groups and the species of CO2 adsorptions on ceria surface have significant influence on the activity of ceria with different morphologies. Rod-ceria has favorable catalytic activity because of the large amount of -OH groups and the formation of bidentate carbonate species.
  • 加载中
    1. [1]

      Huang M., Fabris S.. CO adsorption and oxidation on ceria surfaces from DFT+U calculations[J]. J. Phys. Chem. C, 2008,112:8643-8648. doi: 10.1021/jp709898r

    2. [2]

      Aouissi A., Al-Deyab S.S.. Comparative study between gas phase and liquid phase for the production of DMC from methanol and CO2[J]. J. Nat. Gas Chem., 2012,21:189-193. doi: 10.1016/S1003-9953(11)60353-8

    3. [3]

      Vivier L., Duprez D.. Ceria-based solid catalysts for organic chemistry[J]. Chem. Sus. Chem., 2010,3:654-678. doi: 10.1002/cssc.v3:6

    4. [4]

      Tomishige K., Sakaihori T., Ikeda Y., Fujimoto K.. A Novel method of direct synthesis of dimethyl carbonate from methanol and carbon dioxide catalyzed by zirconia[J]. Catal. Lett., 1999,58:225-229. doi: 10.1023/A:1019098405444

    5. [5]

      Agarwal S., Lefferts L., Mojet B.L.. Exposed surfaces on shape-controlled ceria nanoparticles revealed through AC-TEM and water-gas shift reactivity[J]. Chem. Sus. Chem., 2013,6:1898-1906. doi: 10.1002/cssc.v6.10

    6. [6]

      Qiao Z.A., Wu Z.L., Dai S.. Shape-controlled ceria-based nanostructures for catalysis applications[J]. Chem. Sus. Chem., 2013,6:1821-1833. doi: 10.1002/cssc.v6.10

    7. [7]

      Mullins D.R.. The surface chemistry of cerium oxide[J]. Surf. Sci. Rep., 2015,70:42-85. doi: 10.1016/j.surfrep.2014.12.001

    8. [8]

      Guan Y.J., Hensen E.J.M., Liu Y.. Template-free synthesis of sphere, rod and prism morphologies of CeO2 oxidation catalysts[J]. Catal. Lett., 2010,137:28-34. doi: 10.1007/s10562-010-0349-5

    9. [9]

      Mai H.X., Sun L.D., Zhang Y.W.. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J. Phys. Chem. B, 2005,109:24380-24385. doi: 10.1021/jp055584b

    10. [10]

      Zhou K.B., Wang X., Sun X.M., Peng Q., Li Y.D.. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes[J]. J. Catal., 2005,229:206-212. doi: 10.1016/j.jcat.2004.11.004

    11. [11]

      Liu X.W., Zhou K.B., Wang L., Wang B.Y., Li Y.D.. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods[J]. J. Am. Chem. Soc., 2009,131:3140-3141. doi: 10.1021/ja808433d

    12. [12]

      Yoshida Y., Arai Y., Kado S., Kunimori K., Tomishige K.. Direct synthesis of organic carbonates from the reaction of CO2 with methanol and ethanol over CeO2 catalysts[J]. Catal. Today, 2006,115:95-101. doi: 10.1016/j.cattod.2006.02.027

    13. [13]

      Tundo P., Selva M.. The chemistry of dimethyl carbonate[J]. Acc. Chem. Res., 2002,35:706-716. doi: 10.1021/ar010076f

    14. [14]

      K.W. La, M.H. Youn, J.S. Chung, S.H. Baeck, I.K. Song, Synthesis of dimethyl carbonate from methanol and carbon dioxide by heteropolyacid/metal oxide catalysts, in:C.K. Rhee (Ed.), Nanocomposites and Nanoporous Materials VⅡ, Trans Tech Publications Ltd, Stafa-Zurich, 2007, pp. 287-290.

    15. [15]

      Hofmann H.J., Brandner A., Claus P.. Direct synthesis of dimethyl carbonate by carboxylation of methanol on ceria-based mixed oxides[J]. Chem. Eng. Technol., 2012,35:2140-2146. doi: 10.1002/ceat.v35.12

    16. [16]

      Xie S.B., Bell A.T.. An in situ raman study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia[J]. Catal. Lett., 2000,70:137-143. doi: 10.1023/A:1018837317910

    17. [17]

      Jung K.T., Bell A.T.. An in Situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia[J]. J. Catal., 2001,204:339-347. doi: 10.1006/jcat.2001.3411

    18. [18]

      Aresta M., Dibenedetto A., Pastore C.. Influence of Al2O3 on the performance of CeO2 usd as catalyst in the direct carboxylation of methanol to dimethylcarbonate and the elucidation of the reaction mechanism[J]. J. Catal., 2010,269:44-52. doi: 10.1016/j.jcat.2009.10.014

    19. [19]

      Santos B.A.V., Pereira C.S.M., Silva V.M.T.M., Loureiro J.M., Rodrigues A.E.. Kinetic study for the direct synthesis of dimethyl carbonate from methanol and CO2 over CeO2 at high Pressure Conditions[J]. Appl. Catal. A:Gen., 2013,455:219-226. doi: 10.1016/j.apcata.2013.02.003

    20. [20]

      Wang S.P., Zhou J.J., Zhao S.Y., Zhao Y.J., Ma X.B.. Enhancements of dimethyl carbonate synthesis from methanol and carbon dioxide:the in situ hydrolysis of 2-cyanopyridine and crystal face effect of ceria[J]. Chin. Chem. Lett., 2015,26:1096-1100. doi: 10.1016/j.cclet.2015.05.005

    21. [21]

      Wu Z.L., Li M.J., Mullins D.R., Overbury S.H.. Probing the surface sites of CeO2 nanocrystals with well-defined surface planes via methanol adsorption and desorption[J]. Acs Catal., 2012,2:2224-2234. doi: 10.1021/cs300467p

    22. [22]

      Rousseau S., Marie O., Bazin P.. Investigation of methanol oxidation over au/catalysts using operando IR spectroscopy:determination of the active sites, intermediate/spectator species, and reaction mechanism, J[J]. Am. Chem. Soc., 2010,132:10832-10841. doi: 10.1021/ja1028809

    23. [23]

      Pozdnyakova O., Teschner D., Wootsch A.. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I:oxidation state and surface species on Pt/CeO2 under reaction conditions[J]. J. Catal., 2006,237:1-16. doi: 10.1016/j.jcat.2005.10.014

    24. [24]

      Wu Z.L., Mann A.K.P., Li M.J., Overbury S.H.. Spectroscopic investigation of surfacedependent acid-base property of ceria nanoshapes[J]. J. Phys. Chem. C., 2015,119:7340-7350. doi: 10.1021/acs.jpcc.5b00859

    25. [25]

      Binet C., Daturi M., Lavalley J.C.. IR study of polycrystalline ceria properties in oxidised and reduced states[J]. Catal. Today, 1999,50:207-225. doi: 10.1016/S0920-5861(98)00504-5

    26. [26]

      Li C., Sakata Y., Arai T.. Carbon monoxide and carbon dioxide adsorption on cerium oxide studied by fourier-transform infrared spectroscopy. Part 1.-formation of carbonate species on dehydroxylated CeO2, at room temperature[J]. J. Chem. Soc., 1989,85:929-943.

    27. [27]

      Vayssilov G.N., Mihaylov M., Petkov P.S., Hadjiivanov K.I., Neyman K.M.. Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria:a combined density functional and infrared spectroscopy investigation[J]. J. Phys. Chem. C, 2011,115:23435-23454. doi: 10.1021/jp208050a

    28. [28]

      Paier J., Penschke C., Sauer J.. Oxygen defects and surface chemistry of ceria:quantum chemical studies compared to experiment[J]. Chem. Rev., 2013,113:3949-3985. doi: 10.1021/cr3004949

  • 加载中
    1. [1]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    2. [2]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    3. [3]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    4. [4]

      Yanzhe WANGXiaoming GUOQiangsheng GUOLiang LIBin LUPeihang YE . Effect of Ce introduction on the low-temperature performance of NiAl catalyst for CO2 methanation. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2218-2228. doi: 10.11862/CJIC.20250202

    5. [5]

      Kailu GuoJinzhi JiaHuijiao WangZiyu HaoYinjian ChenKe ShiHaixia WuCailing Xu . Structural tuning and reconstruction of CeO2-coupled nickel selenides for robust water oxidation. Chinese Chemical Letters, 2025, 36(8): 110888-. doi: 10.1016/j.cclet.2025.110888

    6. [6]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    9. [9]

      Wei PengYao ShenXiaolin YuChenghang ZhengXiao ZhangJingkai ZhaoJiexu YeShihan ZhangXiang Gao . Asymmetric coupling of atop-type and hollow-type adsorbed *CO to boost electrocatalytic CO2-to-C2 conversion on high-index Cu2O crystal planes. Chinese Chemical Letters, 2026, 37(1): 111187-. doi: 10.1016/j.cclet.2025.111187

    10. [10]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    11. [11]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    12. [12]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    13. [13]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    14. [14]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    15. [15]

      Xiuxiu JiaTao YinNianpeng LiHua ZhangAnxian ShiAbdukader AbdukayumSanshuang GaoGuangzhi Hu . Reticulated lanthanum (La) carbonate-carbon composite for efficient phosphorus removal from eutrophic wastewater. Chinese Chemical Letters, 2025, 36(6): 110398-. doi: 10.1016/j.cclet.2024.110398

    16. [16]

      Qiuxia TanE PangQin WangYuanyu TangPan ZhuShaojing ZhaoJianing YiShiguang JinMinhuan Lan . Manganese carbonate-based nanoplatform for starvation therapy cascaded chemodynamic therapy, enhanced phototherapy and immune activation. Chinese Chemical Letters, 2025, 36(10): 110770-. doi: 10.1016/j.cclet.2024.110770

    17. [17]

      Yun Zhou Geqian Fang Haiyan Wang Wenjun Yu Chun Zhu Jin-Xia Liang Jian Lin . Non-covalent interactions between adsorbed •OH species and UiO-66-NH2 for methane hydroxylation. Chinese Journal of Structural Chemistry, 2025, 44(8): 100629-100629. doi: 10.1016/j.cjsc.2025.100629

    18. [18]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    19. [19]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    20. [20]

      Chongbei WuBenzhi WangXuan LiJiaxuan GuYihan WuZhe ZhaoPengfei JiaJizhou Jiang . Dual activation pathways based on OH-functionalized alk-Ti3C2 MXene/RuOx boosting the hydrogen generation. Chinese Chemical Letters, 2025, 36(8): 111162-. doi: 10.1016/j.cclet.2025.111162

Metrics
  • PDF Downloads(2)
  • Abstract views(1720)
  • HTML views(199)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return