An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over well-shaped CeO2
- Corresponding author: Wang Sheng-Ping, spwang@tju.edu.cn
Citation: Zhao Shu-Yang, Wang Sheng-Ping, Zhao Yu-Jun, Ma Xin-Bin. An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over well-shaped CeO2[J]. Chinese Chemical Letters, ;2017, 28(1): 65-69. doi: 10.1016/j.cclet.2016.06.003
Huang M., Fabris S.. CO adsorption and oxidation on ceria surfaces from DFT+U calculations[J]. J. Phys. Chem. C, 2008,112:8643-8648. doi: 10.1021/jp709898r
Aouissi A., Al-Deyab S.S.. Comparative study between gas phase and liquid phase for the production of DMC from methanol and CO2[J]. J. Nat. Gas Chem., 2012,21:189-193. doi: 10.1016/S1003-9953(11)60353-8
Vivier L., Duprez D.. Ceria-based solid catalysts for organic chemistry[J]. Chem. Sus. Chem., 2010,3:654-678. doi: 10.1002/cssc.v3:6
Tomishige K., Sakaihori T., Ikeda Y., Fujimoto K.. A Novel method of direct synthesis of dimethyl carbonate from methanol and carbon dioxide catalyzed by zirconia[J]. Catal. Lett., 1999,58:225-229. doi: 10.1023/A:1019098405444
Agarwal S., Lefferts L., Mojet B.L.. Exposed surfaces on shape-controlled ceria nanoparticles revealed through AC-TEM and water-gas shift reactivity[J]. Chem. Sus. Chem., 2013,6:1898-1906. doi: 10.1002/cssc.v6.10
Qiao Z.A., Wu Z.L., Dai S.. Shape-controlled ceria-based nanostructures for catalysis applications[J]. Chem. Sus. Chem., 2013,6:1821-1833. doi: 10.1002/cssc.v6.10
Mullins D.R.. The surface chemistry of cerium oxide[J]. Surf. Sci. Rep., 2015,70:42-85. doi: 10.1016/j.surfrep.2014.12.001
Guan Y.J., Hensen E.J.M., Liu Y.. Template-free synthesis of sphere, rod and prism morphologies of CeO2 oxidation catalysts[J]. Catal. Lett., 2010,137:28-34. doi: 10.1007/s10562-010-0349-5
Mai H.X., Sun L.D., Zhang Y.W.. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J. Phys. Chem. B, 2005,109:24380-24385. doi: 10.1021/jp055584b
Zhou K.B., Wang X., Sun X.M., Peng Q., Li Y.D.. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes[J]. J. Catal., 2005,229:206-212. doi: 10.1016/j.jcat.2004.11.004
Liu X.W., Zhou K.B., Wang L., Wang B.Y., Li Y.D.. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods[J]. J. Am. Chem. Soc., 2009,131:3140-3141. doi: 10.1021/ja808433d
Yoshida Y., Arai Y., Kado S., Kunimori K., Tomishige K.. Direct synthesis of organic carbonates from the reaction of CO2 with methanol and ethanol over CeO2 catalysts[J]. Catal. Today, 2006,115:95-101. doi: 10.1016/j.cattod.2006.02.027
Tundo P., Selva M.. The chemistry of dimethyl carbonate[J]. Acc. Chem. Res., 2002,35:706-716. doi: 10.1021/ar010076f
K.W. La, M.H. Youn, J.S. Chung, S.H. Baeck, I.K. Song, Synthesis of dimethyl carbonate from methanol and carbon dioxide by heteropolyacid/metal oxide catalysts, in:C.K. Rhee (Ed.), Nanocomposites and Nanoporous Materials VⅡ, Trans Tech Publications Ltd, Stafa-Zurich, 2007, pp. 287-290.
Hofmann H.J., Brandner A., Claus P.. Direct synthesis of dimethyl carbonate by carboxylation of methanol on ceria-based mixed oxides[J]. Chem. Eng. Technol., 2012,35:2140-2146. doi: 10.1002/ceat.v35.12
Xie S.B., Bell A.T.. An in situ raman study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia[J]. Catal. Lett., 2000,70:137-143. doi: 10.1023/A:1018837317910
Jung K.T., Bell A.T.. An in Situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia[J]. J. Catal., 2001,204:339-347. doi: 10.1006/jcat.2001.3411
Aresta M., Dibenedetto A., Pastore C.. Influence of Al2O3 on the performance of CeO2 usd as catalyst in the direct carboxylation of methanol to dimethylcarbonate and the elucidation of the reaction mechanism[J]. J. Catal., 2010,269:44-52. doi: 10.1016/j.jcat.2009.10.014
Santos B.A.V., Pereira C.S.M., Silva V.M.T.M., Loureiro J.M., Rodrigues A.E.. Kinetic study for the direct synthesis of dimethyl carbonate from methanol and CO2 over CeO2 at high Pressure Conditions[J]. Appl. Catal. A:Gen., 2013,455:219-226. doi: 10.1016/j.apcata.2013.02.003
Wang S.P., Zhou J.J., Zhao S.Y., Zhao Y.J., Ma X.B.. Enhancements of dimethyl carbonate synthesis from methanol and carbon dioxide:the in situ hydrolysis of 2-cyanopyridine and crystal face effect of ceria[J]. Chin. Chem. Lett., 2015,26:1096-1100. doi: 10.1016/j.cclet.2015.05.005
Wu Z.L., Li M.J., Mullins D.R., Overbury S.H.. Probing the surface sites of CeO2 nanocrystals with well-defined surface planes via methanol adsorption and desorption[J]. Acs Catal., 2012,2:2224-2234. doi: 10.1021/cs300467p
Rousseau S., Marie O., Bazin P.. Investigation of methanol oxidation over au/catalysts using operando IR spectroscopy:determination of the active sites, intermediate/spectator species, and reaction mechanism, J[J]. Am. Chem. Soc., 2010,132:10832-10841. doi: 10.1021/ja1028809
Pozdnyakova O., Teschner D., Wootsch A.. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I:oxidation state and surface species on Pt/CeO2 under reaction conditions[J]. J. Catal., 2006,237:1-16. doi: 10.1016/j.jcat.2005.10.014
Wu Z.L., Mann A.K.P., Li M.J., Overbury S.H.. Spectroscopic investigation of surfacedependent acid-base property of ceria nanoshapes[J]. J. Phys. Chem. C., 2015,119:7340-7350. doi: 10.1021/acs.jpcc.5b00859
Binet C., Daturi M., Lavalley J.C.. IR study of polycrystalline ceria properties in oxidised and reduced states[J]. Catal. Today, 1999,50:207-225. doi: 10.1016/S0920-5861(98)00504-5
Li C., Sakata Y., Arai T.. Carbon monoxide and carbon dioxide adsorption on cerium oxide studied by fourier-transform infrared spectroscopy. Part 1.-formation of carbonate species on dehydroxylated CeO2, at room temperature[J]. J. Chem. Soc., 1989,85:929-943.
Vayssilov G.N., Mihaylov M., Petkov P.S., Hadjiivanov K.I., Neyman K.M.. Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria:a combined density functional and infrared spectroscopy investigation[J]. J. Phys. Chem. C, 2011,115:23435-23454. doi: 10.1021/jp208050a
Paier J., Penschke C., Sauer J.. Oxygen defects and surface chemistry of ceria:quantum chemical studies compared to experiment[J]. Chem. Rev., 2013,113:3949-3985. doi: 10.1021/cr3004949
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Zhenjie Yang , Chenyang Hu , Xuan Pang , Xuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340
Xinyu Liu , Jialin Yang , Zonglin He , Jiaoyan Ai , Lina Song , Baohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236
Kunyao Peng , Xianbin Wang , Xingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
Guihuang Fang , Wei Chen , Hongwei Yang , Haisheng Fang , Chuang Yu , Maoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
Simin Wei , Yaqing Yang , Junjie Li , Jialin Wang , Jinlu Tang , Ningning Wang , Zhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
Zhijia Zhang , Shihao Sun , Yuefang Chen , Yanhao Wei , Mengmeng Zhang , Chunsheng Li , Yan Sun , Shaofei Zhang , Yong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922
Weiping Guo , Ying Zhu , Hong-Hua Cui , Lingyun Li , Yan Yu , Zhong-Zhen Luo , Zhigang Zou . β-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256
Zhenghua ZHAO , Qin ZHANG , Yufeng LIU , Zifa SHI , Jinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
Xingmin Chen , Yunyun Wu , Yao Tang , Peishen Li , Shuai Gao , Qiang Wang , Wen Liu , Sihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171