Citation: Yan-Ju Luo, Zhi-Yun Lu, Yan Huang. Triplet fusion delayed fluorescence materials for OLEDs[J]. Chinese Chemical Letters, ;2016, 27(8): 1223-1230. doi: 10.1016/j.cclet.2016.06.002 shu

Triplet fusion delayed fluorescence materials for OLEDs

  • Corresponding author: Zhi-Yun Lu, luzhiyun@scu.edu.cn
  • Received Date: 3 May 2016
    Revised Date: 3 May 2016
    Accepted Date: 26 May 2016
    Available Online: 6 August 2016

Figures(6)

  • The development of fluorescent materials capable of harvesting triplet excitons efficiently is of great importance in achieving high-performance low-cost organic light-emitting diodes (OLEDs). Among the three mechanisms converting triplet to singlet excitons, triplet fusion delayed fluorescence (TFDF) plays a key role in the demonstration of highly efficient and reliable OLEDs, especially blue devices, for practice applications. This review focuses on the recent development of TFDF materials and their applications in OLEDs. Fundamental TFDF mechanism, molecular design principles, and the structure-property relationship of TFDF materials with a particular emphasis on their different excited state characters, are presented and discussed. Moreover, the future perspectives and ongoing challenges of TFDF materials are also highlighted.
  • 加载中
    1. [1]

      C.W. Tang, S.A. VanSlyke. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987,51:913-915. doi: 10.1063/1.98799

    2. [2]

      K.T. Kamtekar, A.P. Monkman, M.R. Bryce. Recent advances in white organic lightemitting materials and devices (WOLEDs)[J]. Adv. Mater., 2010,22:572-582. doi: 10.1002/adma.v22:5

    3. [3]

      C.J. Chiang, A. Kimyonok, M.K. Etherington. ultrahigh efficiency fluorescent single and bi-layer organic light emitting diodes: the key role of triplet fusion[J]. Adv. Funct. Mater., 2013,23:739-746. doi: 10.1002/adfm.v23.6

    4. [4]

      P.W. Atkins, R.S. Friedman, Molecular Quantum Mechanics, 4th ed., Oxford University Press, New York, 2005.

    5. [5]

      (a) Y. Chi, P.T. Chou, Transition-metal phosphors with cyclometalating ligands: fundamentals and applications, Chem. Soc. Rev. 39(2010) 638-655; (b) P.T. Chou, Y. Chi, M.W. Chung, et al., Harvesting luminescence via harnessing the photophysical properties of transition metal complexes, Chem. Soc. Rev. 255(2011) 2653-2665.

    6. [6]

      Y. Tao, K. Yuan, T. Chen. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics[J]. Adv. Mater., 2014,26:7931-7958. doi: 10.1002/adma.v26.47

    7. [7]

      (a) D.H. Hu, L. Yao, B. Yang, et al., Reverse intersystem crossing from upper triplet levels to excited singlet: a ‘hot excition’ path for organic light-emitting diodes, Philos. Trans. A: Math. Phys. 373(2015) 20140318; (b) L. Yao, B. Yang, Y.G. Ma, Progress in next-generation organic electroluminescent materials: material design beyond exciton statistics, Sci. China Chem. 57(2014) 335-345.

    8. [8]

      D.Y. Kondakov. Triplet-triplet annihilation in highly efficient fluorescent organic light-emitting diodes: current state and future outlook[J]. Philos. Trans. A: Math. Phys. Eng. Sci., 2015,37320140321. doi: 10.1098/rsta.2014.0321

    9. [9]

      (a) P. Rajamalli, N. Senthilkumar, P. Gandeepan, et al., A new molecular design based on thermally activated delayed fluorescence for highly efficient organic light emitting diodes, J. Am. Chem. Soc. 138(2015) 628-634; (b) S. Hirata, Y. Sakai, K. Masui, et al., Highly efficient blue electroluminescence based on thermally activated delayed fluorescence, Nat. Mater. 14(2015) 330-336.

    10. [10]

      Y.F. Zhang, S.R. Forrest. Triplets contribute to both an increase and loss in fluorescent yield in organic light emitting diodes[J]. Phys. Rev. Lett., 2012,108267404. doi: 10.1103/PhysRevLett.108.267404

    11. [11]

      D.Y. Kondakov. Characterization of triplet-triplet annihilation in organic lightemitting diodes based on anthracene derivatives[J]. J. Appl. Phys., 2007,102114504. doi: 10.1063/1.2818362

    12. [12]

      P.Y. Chou, H.H. Chou, Y.H. Chen. Efficient delayed fluorescence via triplettriplet annihilation for deep-blue electroluminescence[J]. Chem. Commun., 2014,50:6869-6871. doi: 10.1039/c4cc01851f

    13. [13]

      J. Jortner, S.I. Choi, J.L. Katz. Triplet energy transfer and triplet-triplet interaction in aromatic crystals[J]. Phys. Rev. Lett., 1963,11:323-326. doi: 10.1103/PhysRevLett.11.323

    14. [14]

      B. Dick, B. Nickel. Accessibility of the lowest quintet state of organic molecules through triplet-triplet annihilation; an INDO CI study[J]. Chem. Phys., 1983,78:1-16. doi: 10.1016/0301-0104(83)87001-3

    15. [15]

      V. Jankus, M. Aydemir, F.B. Dias, et al., Generating light from upper excited triplet states: a contribution to the indirect singlet yield of a polymer OLED, helping to exceed the 25% singlet exciton limit, Adv. Sci. 3(2016), http://dx.doi.org/10.1002/advs.201500221.

    16. [16]

      C. Ganzorig, M. Fujihira. A possible mechanism for enhanced electrofluorescence emission through triplet-triplet annihilation in organic electroluminescent devices[J]. Appl. Phys. Lett., 2002,81:3137-3139. doi: 10.1063/1.1515129

    17. [17]

      D.Y. Kondakov, T.D. Pawlik, T.K. Hatwar. Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes[J]. J. Appl. Phys., 2009,106124510. doi: 10.1063/1.3273407

    18. [18]

      P. Chen, Z.H. Xiong, Q.M. Peng. Magneto-electroluminescence as a tool to discern the origin of delayed fluorescence: reverse intersystem crossing or triplettriplet annihilation[J]. Adv. Opt. Mater., 2014,2:142-148. doi: 10.1002/adom.201300422

    19. [19]

      J. Xiang, Y.B. Chen, W.Y. Jia. Realization of triplet-triplet annihilation in planar heterojunction exciplex-based organic light-emitting diodes[J]. Org. Electron., 2016,28:94-99. doi: 10.1016/j.orgel.2015.10.017

    20. [20]

      C.A. Parker, C.G. Hatchard. Delayed fluorescence from solutions of anthracene and phenanthrene[J]. Proc. R. Soc. Lond. A: Math. Phys. Sci., 1962,269:574-584. doi: 10.1098/rspa.1962.0197

    21. [21]

      R.G. Kepler, J.C. Caris, P. Avakian. Triplet excitons and delayed fluorescence in anthracene crystals[J]. Phys. Rev. Lett., 1963,10:400-402. doi: 10.1103/PhysRevLett.10.400

    22. [22]

      J. Kido, Y. Iizumi. Fabrication of highly efficient organic electroluminescent devices[J]. Appl. Phys. Lett., 1998,73:2721-2723. doi: 10.1063/1.122570

    23. [23]

      Z.D. Popovic, H. Aziz. Delayed electroluminescence in small-molecule-based organic light-emitting diodes: evidence for triplet-triplet annihilation and recombination-center-mediated light-generation mechanism[J]. J. Appl. Phys., 2005,98013510. doi: 10.1063/1.1937472

    24. [24]

      C. Mayr, T.D. Schmidt, W. Brütting. High-efficiency fluorescent organic lightemitting diodes enabled by triplet-triplet annihilation and horizontal emitter orientation[J]. Appl. Phys. Lett., 2014,105183304. doi: 10.1063/1.4901341

    25. [25]

      A.H. Davis, K. Bussmann. Large magnetic field effects in organic light emitting diodes based on tris(8-hydroxyquinoline aluminum)(Alq3)/N,N'-di(naphthalen-1-yl)-N,N'-diphenylbenzidine (NPB) bilayers[J]. J. Vac. Sci. Technol. A, 2004,22:1885-1891.

    26. [26]

      (a) R. Liu, Y. Zhang, Y.L. Lei, et al., Magnetic field dependent triplet-triplet annihilation in Alq3-based organic light emitting diodes at different temperatures, J. Appl. Phys. 105(2009) 093719; (b) Y.L. Lei, Y. Zhang, R. Liu, et al., Driving current and temperature dependent magnetic-field modulated electroluminescence in Alq3-based organic light emitting diode, Org. Electron. 10(2009) 889-894.

    27. [27]

      J.M. Shi, C.W. Tang. Anthracene derivatives for stable blue-emitting organic electroluminescence devices[J]. Appl. Phys. Lett., 2002,80:3201-3203. doi: 10.1063/1.1475361

    28. [28]

      (a) H. Zhang, H. Tong, Y.L. Zhao, et al., Synthesis, crystal structures and photoluminescence of anthracene- and pyrene-based coumarin derivatives, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 150(2015) 316-320; (b) K.A. Nguyen, J. Kennel, R. Pachter, A density functional theory study of phosphorescence and triplet-triplet absorption for nonlinear absorption chromophores, J. Chem. Phys. 117(2002) 7128-7136.

    29. [29]

      L. Ma, K.K. Zhang, C. Kloc. Singlet fission in rubrene single crystal: direct observation by femtosecond pump-probe spectroscopy[J]. Phys. Chem. Chem. Phys., 2012,14:8307-8312. doi: 10.1039/c2cp40449d

    30. [30]

      M. Pope, H.P. Kallmann, P. Magnante. Electroluminescence in organic crystals[J]. J. Chem. Phys., 1963,38:2042-2043. doi: 10.1063/1.1733929

    31. [31]

      M.R. Zhu, C.L. Yang. Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes[J]. Chem. Soc. Rev., 2013,42:4963-4976. doi: 10.1039/c3cs35440g

    32. [32]

      Y.C. Luo, H. Aziz. Correlation between triplet-triplet annihilation and electroluminescence efficiency in doped fluorescent organic light-emitting devices[J]. Adv. Funct. Mater., 2010,20:1285-1293. doi: 10.1002/adfm.v20:8

    33. [33]

      C.H. Liao, M.T. Lee, C.H. Tsai. Highly efficient blue organic light-emitting devices incorporating a composite hole transport layer[J]. Appl. Phys. Lett., 2005,86203507. doi: 10.1063/1.1931052

    34. [34]

      Y.J. Pu, G. Nakata, F. Satoh. Optimizing the charge balance of fluorescent organic light-emitting devices to achieve high external quantum efficiency beyond the conventional upper limit[J]. Adv. Mater., 2012,24:1765-1770. doi: 10.1002/adma.201104403

    35. [35]

      D.Y. Kondakov. Role of triplet-triplet annihilation in highly efficient fluorescent devices[J]. J. Soc. Info. Display, 2009,17:137-144. doi: 10.1889/JSID17.2.137

    36. [36]

      S.K. Kim, B. Yang, Y.Q. Ma. Exceedingly efficient deep-blue electroluminescence from new anthracenes obtained using rational molecular design[J]. J. Mater. Chem., 2008,18:3376-3384. doi: 10.1039/b805062g

    37. [37]

      D. Yokoyama, Y. Park, B. Kim. Dual efficiency enhancement by delayed fluorescence and dipole orientation in high-efficiency fluorescent organic lightemitting diodes[J]. Appl. Phys. Lett., 2011,99123303. doi: 10.1063/1.3637608

    38. [38]

      I. Cho, S.H. Kim, J.H. Kim. Highly efficient and stable deep-blue emitting anthracene-derived molecular glass for versatile types of non-doped OLED applications[J]. J. Mater. Chem., 2012,22:123-129. doi: 10.1039/C1JM14482K

    39. [39]

      W.C. Chen, C.S. Lee, Q.X. Tong. Blue-emitting organic electrofluorescence materials: progress and prospective[J]. J. Mater. Chem., 2015,3:10957-10963.

    40. [40]

      T. Suzuki, Y. Nonaka, T. Watabe. Highly efficient long-life blue fluorescent organic light-emitting diode exhibiting triplet-triplet annihilation effects enhanced by a novel hole-transporting material[J]. Jpn. J. Appl. Phys., 2014,53052102. doi: 10.7567/JJAP.53.052102

    41. [41]

      K. Okumoto, H. Kanno, Y. Hamada. Green fluorescent organic light-emitting device with external quantum efficiency of nearly 10%[J]. Appl. Phys. Lett., 2006,89063504. doi: 10.1063/1.2266452

    42. [42]

      H. Fukagawa, T. Shimizu, N. Ohbe. Anthracene derivatives as efficient emitting hosts for blue organic light-emitting diodes utilizing triplet-triplet annihilation[J]. Org. Electron., 2012,13:1197-1203. doi: 10.1016/j.orgel.2012.03.019

    43. [43]

      Y.Y. Lyu, J. Kwak, O. Kwon. Silicon-cored anthracene derivatives as host materials for highly efficient blue organic light-emitting devices[J]. Adv. Mater., 2008,20:2720-2729. doi: 10.1002/adma.v20:14

    44. [44]

      J.Y. Hu, Y.J. Pu, F. Satoh. Bisanthracene-based donor-acceptor-type lightemitting dopants: highly efficient deep-blue emission in organic light-emitting devices[J]. Adv. Funct. Mater., 2014,24:2064-2071. doi: 10.1002/adfm.v24.14

    45. [45]

      J.P. Spindler, W.J. Begley, T.K. Hatwar. 30.4: high-efficiency fluorescent redand yellow-emitting OLED devices[J]. SID Int. Symp. Digest Tech. Pap., 2009,40:420-423. doi: 10.1889/1.3256804

    46. [46]

      J. Xue, C. Li, L.J. Xin. High-efficiency and low efficiency roll-off near-infrared fluorescent OLEDs through triplet fusion[J]. Chem. Sci., 2016,7:2888-2895. doi: 10.1039/C5SC04685H

    47. [47]

      V. Jankus, C.J. Chiang, F. Dias. Deep blue exciplex organic light-emitting diodes with enhanced efficiency; P-type or E-type triplet conversion to singlet excitons?[J]. Adv. Mater., 2013,25:1455-1459. doi: 10.1002/adma.v25.10

    48. [48]

      F.B. Dias, K.N. Bourdakos, V. Jankus. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters[J]. Adv. Mater., 2013,25:3707-3714. doi: 10.1002/adma.v25.27

    49. [49]

      (a) J. Zhou, P. Chen, X. Wang. Charge-transfer-featured materials-promising hosts for fabrication of efficient OLEDs through triplet harvesting via triplet fusion, Chem. Commun., 2014,50: 7586-7589; (b) X.J. Zheng, Q.M. Peng, J. Lin, et al., Simultaneous harvesting of triplet excitons in OLEDs by both guest and host materials with an intramolecular charge-transfer feature via triplet-triplet annihilation[J]. J. Mater. Chem. C, 2015,3:6970-6978.

    50. [50]

      S.J. Cha, N.S. Han, J.K. Song. Efficient deep blue fluorescent emitter showing high external quantum efficiency[J]. Dyes Pigm., 2015,120:200-207. doi: 10.1016/j.dyepig.2015.04.020

    51. [51]

      Y.H. Chen, C.C. Lin, M.J. Huang. Superior upconversion fluorescence dopants for highly efficient deep-Blue electroluminescent devices[J]. Chem. Sci., 2016,7:4044-4051. doi: 10.1039/C6SC00100A

  • 加载中
    1. [1]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    2. [2]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    3. [3]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    4. [4]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    5. [5]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    6. [6]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    7. [7]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    8. [8]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    9. [9]

      Yuan LiuBoyang WangYaxin LiWeidong LiSiyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426

    10. [10]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    12. [12]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    13. [13]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    14. [14]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    15. [15]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    16. [16]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    17. [17]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    18. [18]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    19. [19]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    20. [20]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

Metrics
  • PDF Downloads(4)
  • Abstract views(767)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return