Single-chain and monolayered conjugated polymers for molecular electronics
- Corresponding author: Tao Li, litao1983@sjtu.edu.cn
Citation:
Zhao-Yang Zhang, Tao Li. Single-chain and monolayered conjugated polymers for molecular electronics[J]. Chinese Chemical Letters,
;2016, 27(8): 1209-1222.
doi:
10.1016/j.cclet.2016.05.031
D. Xiang, X. Wang, C. Jia. Molecular-scale electronics: from concept to function[J]. Chem. Rev., 2016,116:4318-4440. doi: 10.1021/acs.chemrev.5b00680
R.M. Metzger. Unimolecular electronics[J]. Chem. Rev., 2015,115:5056-5115. doi: 10.1021/cr500459d
B. Mann. Tunneling through fatty acid salt monolayers[J]. J. Appl. Phys., 1971,42:4398-4405. doi: 10.1063/1.1659785
A. Aviram, M.A. Ratner. Molecular rectifiers[J]. Chem. Phys. Lett., 1974,29:277-283. doi: 10.1016/0009-2614(74)85031-1
L. Sun, Y.A. Diaz-Fernandez, T.A. Gschneidtner. Single-molecule electronics: from chemical design to functional devices[J]. Chem. Soc. Rev., 2014,43:7378-7411. doi: 10.1039/C4CS00143E
A. Facchetti. p-Conjugated polymers for organic electronics and photovoltaic cell applications[J]. Chem. Mater., 2011,23:733-758. doi: 10.1021/cm102419z
L. Luo, S.H. Choi, C.D. Frisbie. Probing hopping conduction in conjugated molecular wires connected to metal electrodes[J]. Chem. Mater., 2011,23:631-645. doi: 10.1021/cm102402t
H. Yan, A.J. Bergren, R. McCreery. Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions[J]. Proc. Natl. Acad. Sci. U.S.A., 2013,110:5326-5330. doi: 10.1073/pnas.1221643110
H. Liu, N. Wang, J. Zhao. Length-dependent conductance of molecular wires and contact resistance in metal-molecule-metal junctions[J]. ChemPhysChem, 2008,9:1416-1424. doi: 10.1002/cphc.v9:10
S.H. Choi, B. Kim, C.D. Frisbie. Electrical resistance of long conjugated molecular wires[J]. Science, 2008,320:1482-1486. doi: 10.1126/science.1156538
T. Li, W. Hu, D. Zhu. Nanogap electrodes[J]. Adv. Mater., 2010,22:286-300. doi: 10.1002/adma.v22:2
H.X. He, X.L. Li, N.J. Tao. Discrete conductance switching in conducting polymer wires[J]. Phys. Rev. B, 2003,68045302. doi: 10.1103/PhysRevB.68.045302
M. Taniguchi, Y. Nojima, K. Yokota. Self-organized interconnect method for molecular devices[J]. J. Am. Chem. Soc., 2006,128:15062-15063. doi: 10.1021/ja065806z
H. Ozawa, M. Kawao, S. Uno. A photo-responsive molecular wire composed of a porphyrin polymer and a fullerene derivative[J]. J. Mater. Chem., 2009,19:8307-8313. doi: 10.1039/b910638c
W.P. Hu, J. Jiang, H. Nakashima. Electron transport in self-assembled polymer molecular junctions[J]. Phys. Rev. Lett., 2006,96027801. doi: 10.1103/PhysRevLett.96.027801
M.J. Frampton, H.L. Anderson. Insulated molecular wires[J]. Angew. Chem. Int. Ed., 2007,46:1028-1064. doi: 10.1002/(ISSN)1521-3773
C. Pan, C. Zhao, M. Takeuchi. Conjugated oligomers and polymers sheathed with designer side chains[J]. Chem. Asian J., 2015,10:1820-1835. doi: 10.1002/asia.201500452
J. Terao, Y. Tsuji. New synthetic methods of p-conjugated inclusion complexes with high conductivity[J]. J. Incl. Phenom. Macrocycl. Chem., 2014,80:165-175. doi: 10.1007/s10847-014-0381-y
T. Shimomura, T. Akai, T. Abe. Atomic force microscopy observation of insulated molecular wire formed by conducting polymer and molecular nanotube[J]. J. Chem. Phys., 2002,116:1753-1756. doi: 10.1063/1.1446423
J.S. Wilson, M.J. Frampton, J.J. Michels. Supramolecular complexes of conjugated polyelectrolytes with poly(ethylene oxide): multifunctional luminescent semiconductors exhibiting electronic and ionic transport[J]. Adv. Mater., 2005,17:2659-2663. doi: 10.1002/(ISSN)1521-4095
J. Terao, Y. Tanaka, S. Tsuda. Insulated molecular wire with highly conductive π-conjugated polymer core[J]. J. Am. Chem. Soc., 2009,131:18046-18047. doi: 10.1021/ja908783f
H. Masai, J. Terao, S. Seki. Synthesis of one-dimensional metal-containing insulated molecular wire with versatile properties directed toward molecular electronics materials[J]. J. Am. Chem. Soc., 2014,136:1742-1745. doi: 10.1021/ja411665k
T. Shimomura, T. Akai, M. Fujimori. Conductivity measurement of insulated molecular wire formed by molecular nanotube and polyaniline[J]. Synth. Met., 2005,153:497-500. doi: 10.1016/j.synthmet.2005.07.305
L. Lafferentz, F. Ample, H. Yu. Conductance of a single conjugated polymer as a continuous function of its length[J]. Science, 2009,323:1193-1197. doi: 10.1126/science.1168255
G. Reecht, F. Scheurer, V. Speisser. Electroluminescence of a polythiophene molecular wire suspended between a metallic surface and the tip of a scanning tunneling microscope[J]. Phys. Rev. Lett., 2014,112047403. doi: 10.1103/PhysRevLett.112.047403
G. Reecht, H. Bulou, F. Scheurer. Pulling and stretching a molecular wire to tune its conductance[J]. J. Phys. Chem. Lett., 2015,6:2987-2992. doi: 10.1021/acs.jpclett.5b01283
C. Nacci, F. Ample, D. Bleger. Conductance of a single flexible molecular wire composed of alternating donor and acceptor units[J]. Nat. Commun., 2015,67397. doi: 10.1038/ncomms8397
M. Koch, F. Ample, C. Joachim. Voltage-dependent conductance of a single graphene nanoribbon[J]. Nat. Nanotechnol., 2012,7:713-717. doi: 10.1038/nnano.2012.169
L. Lafferentz, V. Eberhardt, C. Dri. Controlling on-surface polymerization by hierarchical and substrate-directed growth[J]. Nat. Chem., 2012,4:215-220. doi: 10.1038/nchem.1242
J.A. Lipton-Duffin, J.A. Miwa, M. Kondratenko. Step-by-step growth of epitaxially aligned polythiophene by surface-confined reaction[J]. Proc. Natl. Acad. Sci. U.S.A., 2010,107:11200-11204. doi: 10.1073/pnas.1000726107
J.A. Lipton-Duffin, O. Ivasenko, D.F. Perepichka. Synthesis of polyphenylene molecular wires by surface-confined polymerization[J]. Small, 2009,5:592-597. doi: 10.1002/smll.v5:5
L. Grill, M. Dyer, L. Lafferentz. Nano-architectures by covalent assembly of molecular building blocks[J]. Nat. Nanotechnol., 2007,2:687-691. doi: 10.1038/nnano.2007.346
M. Matena, T. Riehm, M. Stöhr. Transforming surface coordination polymers into covalent surface polymers: linked polycondensed aromatics through oligomerization of N-heterocyclic carbene intermediates[J]. Angew. Chem. Int. Ed., 2008,47:2414-2417. doi: 10.1002/(ISSN)1521-3773
B. Cirera, Y. Zhang, J. Björk. Synthesis of extended graphdiyne wires by vicinal surface templating[J]. Nano Lett., 2014,14:1891-1897. doi: 10.1021/nl4046747
X.H. Liu, C.Z. Guan, Q.N. Zheng. Molecular engineering of Schiff-base linked covalent polymers with diverse topologies by gas-solid interface reaction[J]. J. Chem. Phys., 2015,142101905. doi: 10.1063/1.4906271
Z. Gong, B. Yang, H. Lin. Structural variation in surface-supported synthesis by adjusting the stoichiometric ratio of the reactants[J]. ACS Nano, 2016,10:4228-4235. doi: 10.1021/acsnano.5b07601
R.L. McCreery, A.J. Bergren. Progress with molecular electronic junctions: meeting experimental challenges in design and fabrication[J]. Adv. Mater., 2009,21:4303-4322. doi: 10.1002/adma.v21:43
S.H. Choi, C.D. Frisbie. Enhanced hopping conductivity in low band gap donoracceptor molecular wires up to 20 nm in length[J]. J. Am. Chem. Soc., 2010,132:16191-16201. doi: 10.1021/ja1060142
N. Tuccitto, V. Ferri, M. Cavazzini. Highly conductive 40-nm-long molecular wires assembled by stepwise incorporation of metal centres[J]. Nat. Mater., 2008,8:41-46.
M. Oçafrain, T.K. Tran, P. Blanchard. Electropolymerized self-assembled monolayers of a 3,4-ethylenedioxythiophene-thiophene hybrid system[J]. Adv. Funct. Mater., 2008,18:2163-2171. doi: 10.1002/adfm.v18:15
A. Berlin, G. Zotti, G. Schiavon. Adsorption of carboxyl-terminated dithiophene and terthiophene molecules on ITO electrodes and their electrochemical coupling to polymer layers. The influence of molecular geometry[J]. J. Am. Chem. Soc., 1998,120:13453-13460. doi: 10.1021/ja9824728
R.L. McCarley, R.J. Willicut. Tethered monolayers of poly((N-pyrrolyl)alkanethiol) on Au[J]. J. Am. Chem. Soc., 1998,120:9296-9304. doi: 10.1021/ja981677d
J.S. Lee, Y.S. Chi, I.S. Choi. Local scanning probe polymerization of an organic monolayer covalently grafted on silicon[J]. Langmuir, 2012,28:14496-14501. doi: 10.1021/la302526t
S. Kuwabata, R. Fukuzaki, M. Nishizawa. Electrochemical formation of a polyaniline-analogue monolayer on a gold electrode[J]. Langmuir, 1999,15:6807-6812. doi: 10.1021/la981719b
Z. Gao, S.S. Kok, S.O.C. Hardy. Self-assembled conducting polymer monolayers of poly(3-octylthiophene) on gold electrodes[J]. Synth. Met., 1995,75:5-10. doi: 10.1016/0379-6779(95)03384-V
Z. Gao, K.S. Siow. Ultramicroelectrode ensembles based on self-assembled polymeric monolayers on gold electrodes[J]. Electrochim. Acta, 1997,42:315-321. doi: 10.1016/0013-4686(96)00187-9
D. Yang, M. Zi, B. Chen. Separation of pinhole and tunneling electron transfer processes at self-assembled polymeric monolayers on gold electrodes[J]. J. Electroanal. Chem., 1999,470:114-119. doi: 10.1016/S0022-0728(99)00216-8
Y. Shimoyama. Growth process of poly (3-dodecyl thiophene) self-assembled monolayers: FTIR-RAS and gravimetric studies[J]. Thin Solid Films, 2004:403-407-464-465.
B. Vercelli, G. Zotti, A. Berlin. Polypyrrole self-assembled monolayers and electrostatically assembled multilayers on gold and platinum electrodes for molecular junctions[J]. Chem. Mater., 2006,18:3754-3763. doi: 10.1021/cm060802e
Z. Wang, H. Dong, T. Li. Role of redox centre in charge transport investigated by novel self-assembled conjugated polymer molecular junctions[J]. Nat. Commun., 2015,67478. doi: 10.1038/ncomms8478
T. Li, J.R. Hauptmann, Z. Wei. Solution-processed ultrathin chemically derived graphene films as soft top contacts for solid-state molecular electronic junctions[J]. Adv. Mater., 2012,24:1333-1339. doi: 10.1002/adma.201104550
T. Li, M. Jevric, J.R. Hauptmann. Ultrathin reduced graphene oxide films as transparent Top-Contacts for light switchable solid-state molecular junctions[J]. Adv. Mater., 2013,25:4164-4170. doi: 10.1002/adma.201300607
S. Rigaut. Metal complexes in molecular junctions[J]. Dalton Trans., 2013,42:15859-15863. doi: 10.1039/c3dt51487k
W.Y. Wang, T. Lee, M.A. Reed. Mechanism of electron conduction in self-assembled alkanethiol monolayer devices[J]. Phys. Rev. B, 2003,68:21-35.
B.S. Kim, J.M. Beebe, C. Olivier. Temperature and length dependence of charge transport in redox-active molecular wires incorporating ruthenium(II) bis(s-arylacetylide) complexes[J]. J. Phys. Chem. C, 2007,111:7521-7526. doi: 10.1021/jp068824b
C. Musumeci, G. Zappalà, N. Martsinovich. Nanoscale electrical investigation of layer-by-layer grown molecular wires[J]. Adv. Mater., 2014,26:1688-1693. doi: 10.1002/adma.201304848
V. Kolivoška, M. Valášek, M. Gál. Single-molecule conductance in a series of extended viologen molecules[J]. J. Phys. Chem. Lett., 2013,4:589-595. doi: 10.1021/jz302057m
G. Sedghi, K. Sawada, L.J. Esdaile. Single molecule conductance of porphyrin wires with ultralow attenuation[J]. J. Am. Chem. Soc., 2008,130:8582-8583. doi: 10.1021/ja802281c
G. Sedghi, V.M. García-Suárez, L.J. Esdaile. Long-range electron tunnelling in oligo-porphyrin molecular wires[J]. Nat. Nanotechnol., 2011,6:517-523. doi: 10.1038/nnano.2011.111
Z. Li, T. Park, J. Rawson. Quasi-ohmic single molecule charge transport through highly conjugated meso-to-meso ethyne-bridged porphyrin wires[J]. Nano Lett., 2012,12:2722-2727. doi: 10.1021/nl2043216
R.C. Bruce, R. Wang, J. Rawson. Valence band dependent charge transport in bulk molecular electronic devices incorporating highly conjugated multi-[J]. J. Am. Chem. Soc., 2016,138:2078-2081. doi: 10.1021/jacs.5b10772
G. Sedghi, L.J. Esdaile, H.L. Anderson. Comparison of the conductance of three types of porphyrin-based molecular wires: b,meso, b-fused tapes, mesobutadiyne-linked and twisted meso-meso linked oligomers[J]. Adv. Mater., 2012,24:653-657. doi: 10.1002/adma.201103109
Q. Ferreira, A.M. Bragança, L. Alcácer. Conductance of well-defined porphyrin self-assembled molecular wires up to 14 nm in length[J]. J. Phys. Chem. C, 2014,118:7229-7234. doi: 10.1021/jp501122n
J. Jiang, J.R. Smith, Y. Luo. Multidecker bis(benzene)chromium: opportunities for design of rigid and highly flexible molecular wires[J]. J. Phys. Chem. C, 2011,115:785-790. doi: 10.1021/jp109782q
A. Calzolari, S.S. Alexandre, F. Zamora. Metallicity in individual MMX chains[J]. J. Am. Chem. Soc., 2008,130:5552-5562. doi: 10.1021/ja800358c
W. Hu, H. Nakashima, K. Furukawa. Self-assembled rigid conjugated polymer nanojunction and its nonlinear current-voltage characteristics at room temperature[J]. Appl. Phys. Lett., 2004,85:115-157. doi: 10.1063/1.1769590
H. He, J. Zhu, N.J. Tao. A conducting polymer nanojunction switch[J]. J. Am. Chem. Soc., 2001,123:7730-7731. doi: 10.1021/ja016264i
Y. Okawa, S.K. Mandal, C. Hu. Chemical wiring and soldering toward allmolecule electronic circuitry[J]. J. Am. Chem. Soc., 2011,133:8227-8233. doi: 10.1021/ja111673x
M. Nakaya, Y. Okawa, C. Joachim. Nanojunction between fullerene and onedimensional conductive polymer on solid surfaces[J]. ACS Nano, 2014,8:12259-12264. doi: 10.1021/nn504275b
W. Hu, H. Nakashima, K. Furukawa. A self-assembled nano optical switch and transistor based on a rigid conjugated polymer, thioacetyl-end-functionalized poly(para-phenylene ethynylene)[J]. J. Am. Chem. Soc., 2005,127:2804-2805. doi: 10.1021/ja0433929
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Shaohua Zhang , Xiaojuan Dai , Wei Hao , Liyao Liu , Yingqiao Ma , Ye Zou , Jia Zhu , Chong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
Qihan Lin , Jiabin Xing , Yue-Yang Liu , Gang Wu , Shi-Jia Liu , Hui Wang , Wei Zhou , Zhan-Ting Li , Dan-Wei Zhang . taBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119
Brandon Bishop , Shaofeng Huang , Hongxuan Chen , Haijia Yu , Hai Long , Jingshi Shen , Wei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966
Jieqiong Xu , Wenbin Chen , Shengkai Li , Qian Chen , Tao Wang , Yadong Shi , Shengyong Deng , Mingde Li , Peifa Wei , Zhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Minghao Hu , Tianci Xie , Yuqiang Hu , Longjie Li , Ting Wang , Tongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
Dongpu Wu , Zheng Yang , Yuchen Xia , Lulu Wu , Yingxia Zhou , Caoyuan Niu , Puhui Xie , Xin Zheng , Zhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353
Bingwei Wang , Yihong Ding , Xiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
Jinyan Zhang , Fen Liu , Qian Jin , Xueyi Li , Qiong Zhan , Mu Chen , Sisi Wang , Zhenlong Wu , Wencai Ye , Lei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881
Zixi Zou , Jingyuan Wang , Yian Sun , Qian Wang , Da-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972