Citation: Meng Tao, Fang Wu, Teng Li, Yan-Yun Li, Jing-Xing Gao. Novel chiral multidentate P3N4-type ligand for asymmetric transfer hydrogenation of aromatic ketones[J]. Chinese Chemical Letters, ;2017, 28(1): 97-100. doi: 10.1016/j.cclet.2016.05.028 shu

Novel chiral multidentate P3N4-type ligand for asymmetric transfer hydrogenation of aromatic ketones

  • Corresponding author: Yan-Yun Li, yanyunli@xmu.edu.cn
  • Received Date: 11 April 2016
    Revised Date: 17 May 2016
    Accepted Date: 19 May 2016
    Available Online: 3 January 2016

Figures(1)

  • Novel chiral multidentate P3N4-type ligand has been synthesized and characterized by NMR and HRMS. Using i-PrOH as solvent and hydrogen source, asymmetric transfer hydrogenation of various ketones was investigated. The catalyst generated in situ from chiral multidentate aminophosphine ligand (R, R, R, R)-3 and IrCl (CO)(PPh3)2 exhibited highly catalytic activity and excellent enantioselectivity under mild conditions, achieving the corresponding chiral alcohols with up to 99% yield and 99% ee.
  • 加载中
    1. [1]

      Mezzetti A.. Ruthenium complexes with chiral tetradentate PNNP ligands:asymmetric catalysis from the viewpoint of inorganic chemistry[J]. Dalton Trans., 2010,39:7851-7869. doi: 10.1039/c0dt00119h

    2. [2]

      Ioannis D.K.. Recent advances on P, N-containing ligands for transition-metal homogeneous catalysis[J]. Curr. Org. Synth., 2008,5:227-249. doi: 10.2174/157017908785133447

    3. [3]

      Chelucci G., Orru G., Pinna G.A.. Chiral P, N-ligands with pyridine-nitrogen and phosphorus donor atoms[J]. Syntheses and applications in asymmetric catalysis, Tetrahedron, 2003,59:9471-9515.  

    4. [4]

      Helmchen G., Pfaltz A.. Phosphinooxazolines:a new class of versatile, modular P, N-ligands for asymmetric catalysis[J]. Acc. Chem. Res., 2000,33:336-345. doi: 10.1021/ar9900865

    5. [5]

      Espinet P., Soulantica K.. Phosphine-pyridyl and related ligands in synthesis and catalysis[J]. Coord. Chem. Rev. 193-, 1999,195:499-556.  

    6. [6]

      Malacea R., Poli R., Manoury E.. Asymmetric hydrosilylation, transfer hydrogenation and hydrogenation of ketones catalyzed by iridium complexes[J]. Coord. Chem. Rev., 2010,254:729-752. doi: 10.1016/j.ccr.2009.09.033

    7. [7]

      Morris R.H.. Asymmetric hydrogenation, transfer hydrogenation and hydrosilylation of ketones catalyzed by iron complexes[J]. Chem. Soc. Rev., 2009,38:2282-2291. doi: 10.1039/b806837m

    8. [8]

      Wang C., Wu X.F., Xiao J.L.. Broader, greener, and more efficient:recent advances in asymmetric transfer hydrogenation[J]. Chem. Asian J., 2008,3:1750-1770. doi: 10.1002/asia.200800196

    9. [9]

      Ikariya T., Blacker A.J.. Asymmetric transfer hydrogenation of ketones with bifunctional transition metal-based molecular[J]. Acc. Chem. Res., 2007,40:1300-1308. doi: 10.1021/ar700134q

    10. [10]

      Noyori R., Hashiguchi S.. Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes[J]. Acc. Chem. Res., 1997,30:97-102. doi: 10.1021/ar9502341

    11. [11]

      Hamada T., Torii T., Onishi T.. Asymmetric transfer hydrogenation of α-aminoalkyl α'-chloromethyl ketones with chiral Rh complexes[J]. J. Org. Chem., 2004,69:7391-7394. doi: 10.1021/jo0491455

    12. [12]

      Debono N., Besson M., Pinel C.. New chiral bis (oxazoline) Rh (I)-, Ir (I)-and Ru (Ⅱ)-complexes for asymmetric transfer hydrogenations of ketones[J]. Tetrahedron Lett., 2004,45:2235-2238. doi: 10.1016/j.tetlet.2003.12.163

    13. [13]

      Matharu D.S., Morris D.J., Kawamoto A.M.. A stereochemically well-defined rhodium (Ⅲ) catalyst for asymmetric transfer hydrogenation of ketones[J]. Org. Lett., 2005,7:5489-5491. doi: 10.1021/ol052559f

    14. [14]

      Paredes P., Diez J., Gamasa M.P.. Synthesis of enantiopure iridium (I) and iridium (Ⅲ) pybox complexes and their application in the asymmetric transfer hydrogenation of ketones[J]. Organometallics, 2008,27:2597-2607. doi: 10.1021/om7011997

    15. [15]

      Vazquez V.H., Reber S., Ariger M.A.. Iridium diamine catalyst for the asymmetric transfer hydrogenation of ketones[J]. Angew. Chem. Int. Ed., 2011,50:8979-8981. doi: 10.1002/anie.v50.38

    16. [16]

      Zuo W.W., Lough A.J., Li Y.F., Morris R.H.. Amine (imine) diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines[J]. Science, 2013,342:1080-1083. doi: 10.1126/science.1244466

    17. [17]

      Bigler R., Huber R., Mezzetti A.. Highly enantioselective transfer hydrogenation of ketones with chiral (NH)2P2 macrocyclic iron (Ⅱ) complexes[J]. Angew. Chem. Int. Ed., 2015,54:5171-5174. doi: 10.1002/anie.v54.17

    18. [18]

      Li Y.Y., Yu S.L., Shen W.Y., Gao J.X.. Iron-, cobalt-, and nickel-catalyzed asymmetric transfer hydrogenation and asymmetric hydrogenation of ketones[J]. Acc. Chem. Res., 2015,48:2587-2598. doi: 10.1021/acs.accounts.5b00043

    19. [19]

      Gao J.X., Ikariya T., Noyori R.. A ruthenium (Ⅱ) complex with a C2-symmetric diphosphine/diamine tetradentate ligand for asymmetric transfer hydrogenation of aromatic ketones[J]. Organometallics, 1996,15:1087-1089. doi: 10.1021/om950833b

    20. [20]

      Zhang H., Yang C.B., Li Y.Y.. Highly efficient chiral metal cluster systems derived from Ru3(CO)12 and chiral diiminodiphosphines for the asymmetric transfer hydrogenation of ketones[J]. Chem. Commun., 2003,1:142-143.

    21. [21]

      Dong Z.R., Li Y.Y., Chen J.S.. Highly efficient iridium catalyst for asymmetric transfer hydrogenation of aromatic ketones under base-free conditions[J]. Org. Lett., 2005,7:1043-1045. doi: 10.1021/ol047412n

    22. [22]

      Li Y.Y., Zhang X.Q., Dong Z.R.. Kinetic resolution of racemic secondary alcohols catalyzed by chiral diaminodiphosphine-Ir (I) complexes[J]. Org. Lett., 2006,8:5565-5567. doi: 10.1021/ol062244f

    23. [23]

      Yu S.L., Li Y.Y., Dong Z.R.. Synthesis of novel chiral N, P-containing multidentate ligands and their applications in asymmetric transfer hydrogenation[J]. Chin. Chem. Lett., 2011,22:1269-1272. doi: 10.1016/j.cclet.2011.05.033

    24. [24]

      Zhang J.N., Yang X.R., Zhou H.. Oxidative kinetic resolution of racemic secondary alcohols in water with chiral PNNP/Ir catalyst[J]. Green Chem., 2012,14:1289-1292. doi: 10.1039/c2gc00028h

    25. [25]

      Yu S.L., Shen W.Y., Li Y.Y.. Iron-catalyzed highly enantioselective reduction of aromatic ketones with chiral P2N4-type macrocycles[J]. Adv. Synth. Catal., 2012,354:818-822. doi: 10.1002/adsc.201100733

    26. [26]

      Xu Y.Q., Yu S.L., Li Y.Y., Dong Z.R., Gao J.X.. Novel chiral C2-symmetric multidentate aminophosphine ligands for use in catalytic asymmetric reduction of ketones[J]. Chin. Chem. Lett., 2013,24:527-530. doi: 10.1016/j.cclet.2013.03.043

    27. [27]

      Li Y.Y., Yu S.L., Wu X.F.. Iron catalyzed asymmetric hydrogenation of ketones[J]. J. Am. Chem. Soc., 2014,136:4031-4039. doi: 10.1021/ja5003636

    28. [28]

      Zeng L., Wu F., Li Y.Y., Dong Z.R., Gao J.X.. Synthesis and characterization of novel chiral bidentate P[J]. N-containing ligands and ruthenium (Ⅱ) complex. The application in asymmetric transfer hydrogenation of ketones, J. Organomet. Chem., 2014,762:34-39.

  • 加载中
    1. [1]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    2. [2]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    3. [3]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    4. [4]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    5. [5]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    6. [6]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    7. [7]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    8. [8]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    9. [9]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    10. [10]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    11. [11]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    12. [12]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    13. [13]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    14. [14]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    15. [15]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    16. [16]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    17. [17]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    18. [18]

      Wenying CuiZhetong JinWentao FuChengshuo Shen . Flag-hinge-like highly luminescent chiral nanographenes with twist geometry. Chinese Chemical Letters, 2024, 35(11): 109667-. doi: 10.1016/j.cclet.2024.109667

    19. [19]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    20. [20]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

Metrics
  • PDF Downloads(4)
  • Abstract views(870)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return