Citation: Xie Li-Qing, Zhang Yan-Hui, Gao Fei, Wu Quan-An, Xu Piao-Yang, Wang Shan-Shan, Gao Ning-Ning, Wang Qing-Xiang. A highly sensitive dopamine sensor based on a polyaniline/reduced graphene oxide/Nafion nanocomposite[J]. Chinese Chemical Letters, ;2017, 28(1): 41-48. doi: 10.1016/j.cclet.2016.05.015 shu

A highly sensitive dopamine sensor based on a polyaniline/reduced graphene oxide/Nafion nanocomposite

  • Received Date: 7 March 2016
    Revised Date: 26 April 2016
    Accepted Date: 7 May 2016
    Available Online: 27 January 2016

Figures(8)

  • A nanocomposite of polyaniline/reduced graphene oxide (PANI-rGO) was synthesized using a hydrothermal method. The product was characterized by FT-IR, Raman spectra, XRD, SEM and TEM. Then the hybrid material of PANI-rGO and Nafion (PANI-rGO-NF) was prepared and used to modify glassy carbon electrode for the trace determination of dopamine (DA) employing differential pulse voltammetry (DPV). It was found that the hybrid material showed good catalytic activity toward the oxidation of DA, and no response to ascorbic acid (AA) and uric acid (UA) was observed, suggesting a high selectivity of the sensor toward DA. The peak currents were linearly correlated with the concentration of DA in the range from 0.05 μmol/L to 60.0 μmol/L (R=0.996) and 60.0 μmol/L to 180.0 μmol/L (R=0.996) with a detection limit of 0.024 μmol/L (S/N=3). The modified electrode also exhibited excellent repeatability and stability.
  • 加载中
    1. [1]

      Liu S., Xing X.R., Yu J.H.. A novel label-free electrochemical aptasensor based on graphene-polyaniline composite film for dopamine determination[J]. Biosens. Bioelectron., 2012,36:186-191. doi: 10.1016/j.bios.2012.04.011

    2. [2]

      Yu X.W., Sheng K.X., Shi G.Q.. A three-dimensional interpenetrating electrode of reduced graphene oxide for selective detection of dopamine[J]. Analyst, 2014,139:4525-4531. doi: 10.1039/C4AN00604F

    3. [3]

      Huang H.M., Lin C.H.. Methanol plug assisted sweeping-micellar electrokinetic chromatography for the determination of dopamine in urine by violet light emitting diode-induced fluorescence detection[J]. J. Chromatogr. B, 2005,816:113-119. doi: 10.1016/j.jchromb.2004.11.018

    4. [4]

      Fan G.Y., Huang W.J.. Synthesis of ruthenium/reduced graphene oxide composites and application for the selective hydrogenation of halonitroaromatics[J]. Chin. Chem. Lett., 2014,25:359-363. doi: 10.1016/j.cclet.2013.11.044

    5. [5]

      Gao F., Cai X.L., Wang X.. Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode[J]. Sensor. Actuators B, 2013,186:380-387. doi: 10.1016/j.snb.2013.06.020

    6. [6]

      Zhao Y.S., Zhao S.L., Huang J.M., Ye F.G.. Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis[J]. Talanta, 2011,85:2650-2654. doi: 10.1016/j.talanta.2011.08.032

    7. [7]

      Kim Y.R., Bong S., Kang Y.J.. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes[J]. Biosens. Bioelectron., 2010,25:2366-2369. doi: 10.1016/j.bios.2010.02.031

    8. [8]

      Zou H.L., Li B.L., Luo H.Q., Li N.B.. A novel electrochemical biosensor based on hemin functionalized graphene oxide sheets for simultaneous determination of ascorbic acid, dopamine and uric acid[J]. Sens. Actuators B, 2015,207:535-541. doi: 10.1016/j.snb.2014.10.121

    9. [9]

      Zhang F.Y., Li Y.J., Gu Y.E., Wang Z.H., Wang C.M.. One-pot solvothermal synthesis of a Cu2O/graphene nanocomposite and its application in an electrochemical sensor for dopamine[J]. Microchim. Acta, 2011,173:103-109. doi: 10.1007/s00604-010-0535-6

    10. [10]

      Du Y.L., Gao X., Ye X.L.. Composition and architecture-engineered AuSnO2/GNs-SWCNTs nanocomposites as ultrasensitive and robust electrochemical sensor for antioxidant additives in foods[J]. Sens. Actuators B, 2014,203:926-934. doi: 10.1016/j.snb.2014.06.094

    11. [11]

      Zhao X.J., Xia X.H., Yu S.Q., Wang C.M.. An electrochemical sensor for honokiol based on a glassy carbon electrode modified with MoS2/graphene nanohybrid film[J]. Anal. Methods, 2014,6:9375-9382. doi: 10.1039/C4AY01790K

    12. [12]

      Liu S., Yu B., Zhang T.. Preparation of crumpled reduced graphene oxide-poly (pphenylenediamine) hybrids for the detection of dopamine[J]. J. Mater. Chem. A, 2013,1:13314-13320. doi: 10.1039/c3ta12594g

    13. [13]

      Zhou S.H., Wei D.L., Shi H.Y.. Sodium dodecyl benzene sulfonate functionalized graphene for confined electrochemical growth of metal/oxide nanocomposites for sensing application[J]. Talanta, 2013,107:349-355. doi: 10.1016/j.talanta.2013.01.041

    14. [14]

      Su Q., Pang S.P., Alijani V.. Composites of graphene with large aromatic molecules[J]. Adv. Mater., 2009,21:3191-3195. doi: 10.1002/adma.v21:31

    15. [15]

      Premkumar T., Geckeler K.E.. Graphene-DNA hybrid materials:assembly, applications, and prospects, Prog[J]. Polym. Sci., 2012,37:515-529.  

    16. [16]

      Chen C., Zhai W.T., Lu D.D., Zhang H.B., Zheng W.G.. A facile method to prepare stable noncovalent functionalized graphene solution by using thionine[J]. Mater. Res. Bull., 2011,46:583-587. doi: 10.1016/j.materresbull.2010.12.024

    17. [17]

      Stankovich S., Piner R.D., Nguyen S.T., Ruoff R.S.. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets[J]. Carbon, 2006,44:3342-3347. doi: 10.1016/j.carbon.2006.06.004

    18. [18]

      Lin Y., Jin J., Song M.. Preparation and characterisation of covalent polymer functionalized graphene oxide[J]. J. Mater. Chem., 2011,21:3455-3461. doi: 10.1039/C0JM01859G

    19. [19]

      Li D., Huang J.X., Kaner R.B.. Polyaniline nanofibers:a unique polymer nanostructure for versatile applications[J]. Acc. Chem. Res., 2009,42:135-145. doi: 10.1021/ar800080n

    20. [20]

      Zhou H., Sun Y.P., Li G., Chen S.J., Lu Y.. Interfacial assembly and electrochemical properties of nafion-modified-graphene/polyaniline hollow spheres[J]. Polymer, 2014,55:4459-4467. doi: 10.1016/j.polymer.2014.06.079

    21. [21]

      Jin Y.H., Fang M., Jia M.Q.. In situ one-pot synthesis of graphene-polyaniline nanofiber composite for high-performance electrochemical capacitors[J]. Appl. Surf. Sci., 2014,308:333-340. doi: 10.1016/j.apsusc.2014.04.168

    22. [22]

      Huang Y.F., Lin C.W.. Facile synthesis and morphology control of graphene oxide/polyaniline nanocomposites via in-situ polymerization process[J]. Polymer, 2012,53:2574-2582. doi: 10.1016/j.polymer.2012.04.022

    23. [23]

      Ruecha N., Rangkupan R., Rodthongkum N., Chailapakul O.. Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite[J]. Biosens. Bioelectron., 2014,52:13-19. doi: 10.1016/j.bios.2013.08.018

    24. [24]

      Liu S., Wang L., Luo Y.L.. Polyaniline nanofibres for fluorescent nucleic acid detection[J]. Nanoscale, 2011,3:967-969. doi: 10.1039/c0nr00873g

    25. [25]

      Lu P., Yu J., Lei Y.T.. Synthesis and characterization of nickel oxide hollow spheres-reduced graphene oxide-nafion composite and its biosensing for glucose[J]. Sensor. Actuators B, 2015,208:90-98. doi: 10.1016/j.snb.2014.10.140

    26. [26]

      Hummers Jr W.S., Offeman R.E.. Preparation of graphitic oxide[J]. J. Am. Chem. Soc., 1958,801339. doi: 10.1021/ja01539a017

    27. [27]

      Huang X.L., Hu N.T., Gao R.G.. Reduced graphene oxide-polyaniline hybrid:preparation, characterization and its applications for ammonia gas sensing[J]. J. Mater. Chem., 2012,22:22488-22495. doi: 10.1039/c2jm34340a

    28. [28]

      Yang Y.Z., Gao F., Cai X.L.. β-Cyclodextrin functionalized graphene as a highly conductive and multi-site platform for DNA immobilization and ultrasensitive sensing detection[J]. Biosens. Bioelectron., 2015,74:447-453. doi: 10.1016/j.bios.2015.06.018

    29. [29]

      Thekkayil R., John H., Gopinath P.. Grafting of self assembled polyaniline nanorods on reduced graphene oxide for nonlinear optical application[J]. Synth. Met., 2013,185-186:38-44. doi: 10.1016/j.synthmet.2013.09.035

    30. [30]

      Laviron E.. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. J. Electroanal. Chem. Interf. Electrochem., 1979,101:19-28. doi: 10.1016/S0022-0728(79)80075-3

    31. [31]

      Huang Q.T., Zhang H.Q., Hu S.R.. A sensitive and reliable dopamine biosensor was developed based on the Au@carbon dots-chitosan composite film[J]. Biosens. Bioelectron., 2014,52:277-280. doi: 10.1016/j.bios.2013.09.003

    32. [32]

      Huang Q.T., Hu S.R., Zhang H.Q.. Carbon dots and chitosan composite film based biosensor for the sensitive and selective determination of dopamine[J]. Analyst, 2013,138:5417-5423. doi: 10.1039/c3an00510k

    33. [33]

      Wang X.H., Zhang F.F., Xia J.F.. Modification of electrode surface with covalently functionalized graphene oxide by L-tyrosine for determination of dopamine[J]. J. Electroanal. Chem., 2015,738:203-208. doi: 10.1016/j.jelechem.2014.12.005

    34. [34]

      Yang L., Liu D., Huang J.S., You T.Y.. Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode[J]. Sens. Actuators B, 2014,193:166-172. doi: 10.1016/j.snb.2013.11.104

    35. [35]

      Sheng Z.H., Zheng X.Q., Xu J.Y.. Electrochemical sensor based on nitrogen doped graphene:simultaneous determinationof ascorbic acid, dopamine and uric acid[J]. Biosens. Bioelectron., 2012,34:125-131. doi: 10.1016/j.bios.2012.01.030

  • 加载中
    1. [1]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    2. [2]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    3. [3]

      Chenghao LiuXiaofeng LinJing LiaoMin YangMin JiangYue HuangZhizhi DuLina ChenSanjun FanQitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598

    4. [4]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    5. [5]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    6. [6]

      Xilin BaiWei DengJingjuan WangMing Zhou . Enrichment-enhanced detection strategy in the optimized monitoring system of dopamine with carbon dots-based probe. Chinese Chemical Letters, 2025, 36(2): 109959-. doi: 10.1016/j.cclet.2024.109959

    7. [7]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    8. [8]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    9. [9]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    10. [10]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    11. [11]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    12. [12]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    13. [13]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    14. [14]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    15. [15]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    16. [16]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    17. [17]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    18. [18]

      Chuang LIULichao SUNQingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406

    19. [19]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2024.100193

    20. [20]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

Metrics
  • PDF Downloads(1)
  • Abstract views(637)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return