Citation: Xie Li-Qing, Zhang Yan-Hui, Gao Fei, Wu Quan-An, Xu Piao-Yang, Wang Shan-Shan, Gao Ning-Ning, Wang Qing-Xiang. A highly sensitive dopamine sensor based on a polyaniline/reduced graphene oxide/Nafion nanocomposite[J]. Chinese Chemical Letters, ;2017, 28(1): 41-48. doi: 10.1016/j.cclet.2016.05.015
-
A nanocomposite of polyaniline/reduced graphene oxide (PANI-rGO) was synthesized using a hydrothermal method. The product was characterized by FT-IR, Raman spectra, XRD, SEM and TEM. Then the hybrid material of PANI-rGO and Nafion (PANI-rGO-NF) was prepared and used to modify glassy carbon electrode for the trace determination of dopamine (DA) employing differential pulse voltammetry (DPV). It was found that the hybrid material showed good catalytic activity toward the oxidation of DA, and no response to ascorbic acid (AA) and uric acid (UA) was observed, suggesting a high selectivity of the sensor toward DA. The peak currents were linearly correlated with the concentration of DA in the range from 0.05 μmol/L to 60.0 μmol/L (R=0.996) and 60.0 μmol/L to 180.0 μmol/L (R=0.996) with a detection limit of 0.024 μmol/L (S/N=3). The modified electrode also exhibited excellent repeatability and stability.
-
Keywords:
- Dopamine,
- Graphene oxide,
- Electrochemical,
- Nafion,
- Polyaniline
-
-
[1]
Liu S., Xing X.R., Yu J.H.. A novel label-free electrochemical aptasensor based on graphene-polyaniline composite film for dopamine determination[J]. Biosens. Bioelectron., 2012,36:186-191. doi: 10.1016/j.bios.2012.04.011
-
[2]
Yu X.W., Sheng K.X., Shi G.Q.. A three-dimensional interpenetrating electrode of reduced graphene oxide for selective detection of dopamine[J]. Analyst, 2014,139:4525-4531. doi: 10.1039/C4AN00604F
-
[3]
Huang H.M., Lin C.H.. Methanol plug assisted sweeping-micellar electrokinetic chromatography for the determination of dopamine in urine by violet light emitting diode-induced fluorescence detection[J]. J. Chromatogr. B, 2005,816:113-119. doi: 10.1016/j.jchromb.2004.11.018
-
[4]
Fan G.Y., Huang W.J.. Synthesis of ruthenium/reduced graphene oxide composites and application for the selective hydrogenation of halonitroaromatics[J]. Chin. Chem. Lett., 2014,25:359-363. doi: 10.1016/j.cclet.2013.11.044
-
[5]
Gao F., Cai X.L., Wang X.. Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode[J]. Sensor. Actuators B, 2013,186:380-387. doi: 10.1016/j.snb.2013.06.020
-
[6]
Zhao Y.S., Zhao S.L., Huang J.M., Ye F.G.. Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis[J]. Talanta, 2011,85:2650-2654. doi: 10.1016/j.talanta.2011.08.032
-
[7]
Kim Y.R., Bong S., Kang Y.J.. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes[J]. Biosens. Bioelectron., 2010,25:2366-2369. doi: 10.1016/j.bios.2010.02.031
-
[8]
Zou H.L., Li B.L., Luo H.Q., Li N.B.. A novel electrochemical biosensor based on hemin functionalized graphene oxide sheets for simultaneous determination of ascorbic acid, dopamine and uric acid[J]. Sens. Actuators B, 2015,207:535-541. doi: 10.1016/j.snb.2014.10.121
-
[9]
Zhang F.Y., Li Y.J., Gu Y.E., Wang Z.H., Wang C.M.. One-pot solvothermal synthesis of a Cu2O/graphene nanocomposite and its application in an electrochemical sensor for dopamine[J]. Microchim. Acta, 2011,173:103-109. doi: 10.1007/s00604-010-0535-6
-
[10]
Du Y.L., Gao X., Ye X.L.. Composition and architecture-engineered AuSnO2/GNs-SWCNTs nanocomposites as ultrasensitive and robust electrochemical sensor for antioxidant additives in foods[J]. Sens. Actuators B, 2014,203:926-934. doi: 10.1016/j.snb.2014.06.094
-
[11]
Zhao X.J., Xia X.H., Yu S.Q., Wang C.M.. An electrochemical sensor for honokiol based on a glassy carbon electrode modified with MoS2/graphene nanohybrid film[J]. Anal. Methods, 2014,6:9375-9382. doi: 10.1039/C4AY01790K
-
[12]
Liu S., Yu B., Zhang T.. Preparation of crumpled reduced graphene oxide-poly (pphenylenediamine) hybrids for the detection of dopamine[J]. J. Mater. Chem. A, 2013,1:13314-13320. doi: 10.1039/c3ta12594g
-
[13]
Zhou S.H., Wei D.L., Shi H.Y.. Sodium dodecyl benzene sulfonate functionalized graphene for confined electrochemical growth of metal/oxide nanocomposites for sensing application[J]. Talanta, 2013,107:349-355. doi: 10.1016/j.talanta.2013.01.041
-
[14]
Su Q., Pang S.P., Alijani V.. Composites of graphene with large aromatic molecules[J]. Adv. Mater., 2009,21:3191-3195. doi: 10.1002/adma.v21:31
-
[15]
Premkumar T., Geckeler K.E.. Graphene-DNA hybrid materials:assembly, applications, and prospects, Prog[J]. Polym. Sci., 2012,37:515-529.
-
[16]
Chen C., Zhai W.T., Lu D.D., Zhang H.B., Zheng W.G.. A facile method to prepare stable noncovalent functionalized graphene solution by using thionine[J]. Mater. Res. Bull., 2011,46:583-587. doi: 10.1016/j.materresbull.2010.12.024
-
[17]
Stankovich S., Piner R.D., Nguyen S.T., Ruoff R.S.. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets[J]. Carbon, 2006,44:3342-3347. doi: 10.1016/j.carbon.2006.06.004
-
[18]
Lin Y., Jin J., Song M.. Preparation and characterisation of covalent polymer functionalized graphene oxide[J]. J. Mater. Chem., 2011,21:3455-3461. doi: 10.1039/C0JM01859G
-
[19]
Li D., Huang J.X., Kaner R.B.. Polyaniline nanofibers:a unique polymer nanostructure for versatile applications[J]. Acc. Chem. Res., 2009,42:135-145. doi: 10.1021/ar800080n
-
[20]
Zhou H., Sun Y.P., Li G., Chen S.J., Lu Y.. Interfacial assembly and electrochemical properties of nafion-modified-graphene/polyaniline hollow spheres[J]. Polymer, 2014,55:4459-4467. doi: 10.1016/j.polymer.2014.06.079
-
[21]
Jin Y.H., Fang M., Jia M.Q.. In situ one-pot synthesis of graphene-polyaniline nanofiber composite for high-performance electrochemical capacitors[J]. Appl. Surf. Sci., 2014,308:333-340. doi: 10.1016/j.apsusc.2014.04.168
-
[22]
Huang Y.F., Lin C.W.. Facile synthesis and morphology control of graphene oxide/polyaniline nanocomposites via in-situ polymerization process[J]. Polymer, 2012,53:2574-2582. doi: 10.1016/j.polymer.2012.04.022
-
[23]
Ruecha N., Rangkupan R., Rodthongkum N., Chailapakul O.. Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite[J]. Biosens. Bioelectron., 2014,52:13-19. doi: 10.1016/j.bios.2013.08.018
-
[24]
Liu S., Wang L., Luo Y.L.. Polyaniline nanofibres for fluorescent nucleic acid detection[J]. Nanoscale, 2011,3:967-969. doi: 10.1039/c0nr00873g
-
[25]
Lu P., Yu J., Lei Y.T.. Synthesis and characterization of nickel oxide hollow spheres-reduced graphene oxide-nafion composite and its biosensing for glucose[J]. Sensor. Actuators B, 2015,208:90-98. doi: 10.1016/j.snb.2014.10.140
-
[26]
Hummers Jr W.S., Offeman R.E.. Preparation of graphitic oxide[J]. J. Am. Chem. Soc., 1958,801339. doi: 10.1021/ja01539a017
-
[27]
Huang X.L., Hu N.T., Gao R.G.. Reduced graphene oxide-polyaniline hybrid:preparation, characterization and its applications for ammonia gas sensing[J]. J. Mater. Chem., 2012,22:22488-22495. doi: 10.1039/c2jm34340a
-
[28]
Yang Y.Z., Gao F., Cai X.L.. β-Cyclodextrin functionalized graphene as a highly conductive and multi-site platform for DNA immobilization and ultrasensitive sensing detection[J]. Biosens. Bioelectron., 2015,74:447-453. doi: 10.1016/j.bios.2015.06.018
-
[29]
Thekkayil R., John H., Gopinath P.. Grafting of self assembled polyaniline nanorods on reduced graphene oxide for nonlinear optical application[J]. Synth. Met., 2013,185-186:38-44. doi: 10.1016/j.synthmet.2013.09.035
-
[30]
Laviron E.. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. J. Electroanal. Chem. Interf. Electrochem., 1979,101:19-28. doi: 10.1016/S0022-0728(79)80075-3
-
[31]
Huang Q.T., Zhang H.Q., Hu S.R.. A sensitive and reliable dopamine biosensor was developed based on the Au@carbon dots-chitosan composite film[J]. Biosens. Bioelectron., 2014,52:277-280. doi: 10.1016/j.bios.2013.09.003
-
[32]
Huang Q.T., Hu S.R., Zhang H.Q.. Carbon dots and chitosan composite film based biosensor for the sensitive and selective determination of dopamine[J]. Analyst, 2013,138:5417-5423. doi: 10.1039/c3an00510k
-
[33]
Wang X.H., Zhang F.F., Xia J.F.. Modification of electrode surface with covalently functionalized graphene oxide by L-tyrosine for determination of dopamine[J]. J. Electroanal. Chem., 2015,738:203-208. doi: 10.1016/j.jelechem.2014.12.005
-
[34]
Yang L., Liu D., Huang J.S., You T.Y.. Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode[J]. Sens. Actuators B, 2014,193:166-172. doi: 10.1016/j.snb.2013.11.104
-
[35]
Sheng Z.H., Zheng X.Q., Xu J.Y.. Electrochemical sensor based on nitrogen doped graphene:simultaneous determinationof ascorbic acid, dopamine and uric acid[J]. Biosens. Bioelectron., 2012,34:125-131. doi: 10.1016/j.bios.2012.01.030
-
[1]
-
-
[1]
Xue Zhao , Mengshan Chen , Dan Wang , Haoran Zhang , Guangzhi Hu , Yingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327
-
[2]
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
-
[3]
Chenghao Liu , Xiaofeng Lin , Jing Liao , Min Yang , Min Jiang , Yue Huang , Zhizhi Du , Lina Chen , Sanjun Fan , Qitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598
-
[4]
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
-
[5]
Caixia Zhu , Qing Hong , Kaiyuan Wang , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560
-
[6]
Xilin Bai , Wei Deng , Jingjuan Wang , Ming Zhou . Enrichment-enhanced detection strategy in the optimized monitoring system of dopamine with carbon dots-based probe. Chinese Chemical Letters, 2025, 36(2): 109959-. doi: 10.1016/j.cclet.2024.109959
-
[7]
Chunxiu Yu , Zelin Wu , Hongle Shi , Lingyun Gu , Kexin Chen , Chuan-Shu He , Yang Liu , Heng Zhang , Peng Zhou , Zhaokun Xiong , Bo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334
-
[8]
Yuanyi Zhou , Ke Ma , Jinfeng Liu , Zirun Zheng , Bo Hu , Yu Meng , Zhizhong Li , Mingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056
-
[9]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[10]
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
-
[11]
Jie Zhou , Chuanxiang Zhang , Changchun Hu , Shuo Li , Yuan Liu , Zhu Chen , Song Li , Hui Chen , Rokayya Sami , Yan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561
-
[12]
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
-
[13]
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
-
[14]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[15]
Jiqing Liu , Qi Dang , Liting Wang , Dejin Wang , Liang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277
-
[16]
Yang Yang , Jing-Li Luo , Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269
-
[17]
Kailong Zhang , Chao Zhang , Luanhui Wu , Qidong Yang , Jiadong Zhang , Guang Hu , Liang Song , Gaoran Li , Wenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618
-
[18]
Chuang LIU , Lichao SUN , Qingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406
-
[19]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2024.100193
-
[20]
Fengyu Zhang , Yali Liang , Zhangran Ye , Lei Deng , Yunna Guo , Ping Qiu , Peng Jia , Qiaobao Zhang , Liqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(636)
- HTML views(12)