Citation: Duan Zhi-Qiang, Zhong Ming, Shi Fu-Kuan, Xie Xu-Ming. Transparent h-BN/polyacrylamide nanocomposite hydrogels with enhanced mechanical properties[J]. Chinese Chemical Letters, ;2016, 27(9): 1490-1494. doi: 10.1016/j.cclet.2016.04.002 shu

Transparent h-BN/polyacrylamide nanocomposite hydrogels with enhanced mechanical properties

  • Corresponding author: Xie Xu-Ming, xxm-dce@mail.tsinghua.edu.cn
  • Received Date: 17 March 2016
    Revised Date: 27 March 2016
    Accepted Date: 1 April 2016
    Available Online: 12 September 2016

Figures(6)

  • In this study, a facile way has been proposed to prepare transparent, tough and flexible polyacrylamide (PAM) hydrogels which is composed of a dually crosslinked single network by chemical crosslinking of N, N'-methylenebisacrylamide (BIS) and physical crosslinking of hydrophilic hexagonal boron nitride (hBN) nanosheets. The resulting h-BN/PAM nanocomposite hydrogels are highly transparent, and exhibit significantly enhanced mechanical properties compared to the dark (GO)/PAM nanocomposite hydrogels or chemical crosslinking PAM hydrogels. Thus it opens up new opportunities for developing nextgeneration transparent, tough and flexible hydrogels that hold great promise in such important applications as light responsive soft robot and liquid microlenses.
  • 加载中
    1. [1]

      Lee K.Y., Mooney D.J.. Hydrogels for tissue engineering[J]. Chem. Rev., 2001,101:1869-1880. doi: 10.1021/cr000108x

    2. [2]

      Peppas N.A., Hilt J.Z., Khademhosseini A., Langer R.. Hydrogels in biology and medicine:from molecular principles to bionanotechnology[J]. Adv. Mater., 2006,18:1345-1360. doi: 10.1002/(ISSN)1521-4095

    3. [3]

      Seliktar D.. Designing cell-compatible hydrogels for biomedical applications[J]. Science, 2012,336:1124-1128. doi: 10.1126/science.1214804

    4. [4]

      Yang J., Shi F.K., Gong C., Xie X.M.. Dual cross-linked networks hydrogels with unique swelling behavior and high mechanical strength:based on silica nanoparticle and hydrophobic association[J]. J. Colloid Interface Sci., 2012,381:107-115. doi: 10.1016/j.jcis.2012.05.046

    5. [5]

      Yang J., Han C.R., Duan J.F.. Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly(acrylic acid)[J]. J. Mater. Chem., 2012,22:22467-22480. doi: 10.1039/c2jm35498e

    6. [6]

      Shi F.K., Wang X.P., Guo R.H., Zhong M., Xie X.M.. Highly stretchable and super tough nanocomposite physical hydrogels facilitated by the coupling of intermolecular hydrogen bonds and analogous chemical crosslinking of nanoparticles[J]. J. Mater. Chem. B, 2015,3:1187-1192. doi: 10.1039/C4TB01654H

    7. [7]

      Zhong M., Liu Y.T., Xie X.M.. Self-healable, super tough graphene oxide-poly(-acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions[J]. J. Mater. Chem. B, 2015,3:4001-4008. doi: 10.1039/C5TB00075K

    8. [8]

      Yang J., Gong C., Shi F.K., Xie X.M.. High strength of physical hydrogels based on poly(acrylic acid)-g-poly(ethylene glycol) methyl ether:role of chain architecture on hydrogel properties[J]. J. Phys. Chem. B, 2012,116:12038-12047. doi: 10.1021/jp303710d

    9. [9]

      Yang J., Wang X.P., Xie X.M.. In situ synthesis of poly(acrylic acid) physical hydrogels from silica nanoparticles[J]. Soft Matter, 2012,8:1058-1063. doi: 10.1039/C1SM06647A

    10. [10]

      Duan Z.Q., Liu Y.T., Xie X.M., Ye X.Y., Zhu X.D.. h-BN nanosheets as 2D substrates to load 0D Fe3O4 nanoparticles:a hybrid anode material for lithium-ion batteries[J]. Chem. Asian J., 2016,11:828-833. doi: 10.1002/asia.v11.6

    11. [11]

      Huang Y., Zhong M., Huang Y.. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte[J]. Nat. Commun., 2015,610310. doi: 10.1038/ncomms10310

    12. [12]

      Oh J.K., Drumright R., Siegwart D.J., Matyjaszewski K.. The development of microgels/nanogels for drug delivery applications[J]. Prog. Polym. Sci., 2008,33:448-477. doi: 10.1016/j.progpolymsci.2008.01.002

    13. [13]

      Cui H.G., Webber M.J., Stupp S.I.. Self-assembly of peptide amphiphiles:from molecules to nanostructures to biomaterials[J]. Biopolymers, 2010,94:1-18. doi: 10.1002/bip.21328

    14. [14]

      Tibbitt M.W., Anseth K.S.. Hydrogels as extracellular matrix mimics for 3D cell culture[J]. Biotechnol. Bioeng., 2009,103:655-663. doi: 10.1002/bit.v103:4

    15. [15]

      Zhong M., Shi F.K., Liu Y.T., Liu X.Y., Xie X.M.. Tough superabsorbent poly(acrylic acid) nanocomposite physical hydrogels fabricated by a dually cross-linked single network strategy[J]. Chin. Chem. Lett., 2016,27:312-316. doi: 10.1016/j.cclet.2015.12.020

    16. [16]

      Wang Q.G., Mynar J.L., Yoshida M.. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder[J]. Nature, 2010,463:339-343. doi: 10.1038/nature08693

    17. [17]

      Lin W.C., Fan W., Marcellan A., Hourdet D., Creton C.. Large strain and fracture properties of poly(dimethylacrylamide)/silica hybrid hydrogels[J]. Macromolecules, 2010,43:2554-2563. doi: 10.1021/ma901937r

    18. [18]

      Liu Y.T., Xie X.M., Ye X.Y.. Tuning the solubility of boron nitride nanosheets in organic solvents by using block copolymer as a "Janus" modifier[J]. Chem. Commun., 2013,49:388-390. doi: 10.1039/C2CC36623A

    19. [19]

      Cong H.P., Wang P., Yu S.H.. Highly elastic and superstretchable graphene oxide/polyacrylamide hydrogels[J]. Small, 2014,10:448-453. doi: 10.1002/smll.v10.3

    20. [20]

      Cong H.P., Wang P., Yu S.H.. Stretchable and self-healing graphene oxide-polymer composite hydrogels:a dual-network design[J]. Chem. Mater., 2013,25:3357-3362. doi: 10.1021/cm401919c

    21. [21]

      Liu J.P., Chen C.F., He C.C.. Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels[J]. ACS Nano, 2012,6:8194-8202. doi: 10.1021/nn302874v

    22. [22]

      Liu R.Q., Liang S.M., Tang X.Z.. Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels[J]. J. Mater. Chem., 2012,22:14160-14167. doi: 10.1039/c2jm32541a

    23. [23]

      Liu Z.Q., Yang Z.P., Luo Y.L.. Swelling, pH sensitivity, and mechanical properties of poly(acrylamide-co-sodium methacrylate) nanocomposite hydrogels impregnated with carboxyl-functionalized carbon nanotubes[J]. Polym. Compos., 2012,33:665-674. doi: 10.1002/pc.v33.5

    24. [24]

      Zhi C.Y., Bando Y., Tang C.C., Kuwahara H., Golberg D.. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties[J]. Adv. Mater., 2009,21:2889-2893. doi: 10.1002/adma.v21:28

    25. [25]

      Duan Z.Q., Liu Y.T., Xie X.M., Ye X.Y.. A simple and green route to transparent boron nitride/PVA nanocomposites with significantly improved mechanical and thermal properties[J]. Chin. Chem. Lett., 2013,24:17-19. doi: 10.1016/j.cclet.2012.12.014

    26. [26]

      Lin Y., Williams T.V., Xu T.B.. Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis:critical role of water[J]. J. Phys. Chem. C, 2011,115:2679-2685.  

    27. [27]

      Wan S.H., Yu Y.L., Pu J.B., Lu Z.B.. Facile fabrication of boron nitride nanosheets-amorphous carbon hybrid film for optoelectronic applications[J]. RSC Adv., 2015,5:19236-19240. doi: 10.1039/C4RA13268H

    28. [28]

      Amamoto T., Hirata T., Takahashi H.. Spatiotemporal activation of molecules within cells using silica nanoparticles responsive to blue-green light[J]. J. Mater. Chem. B, 2015,3:7427-7433. doi: 10.1039/C5TB01165E

    29. [29]

      Dong L., Agarwal A.K., Beebe D.J., Jiang H.R.. Adaptive liquid microlenses activated by stimuli-responsive hydrogels[J]. Nature, 2006,442:551-554. doi: 10.1038/nature05024

    30. [30]

      Liu J.Q., Song G.S., He C.C., Wang H.L.. Self-healing in tough graphene oxide composite hydrogels[J]. Macromol. Rapid Commun., 2013,34:1002-1007. doi: 10.1002/marc.v34.12

    31. [31]

      Zhu M.F., Liu Y., Sun B.. A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation[J]. Macromol. Rapid Commun., 2006,27:1023-1028. doi: 10.1002/(ISSN)1521-3927

    32. [32]

      Liu Y., Zhu M.F., Liu X.L.. High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics[J]. Polymer, 2006,47:1-5. doi: 10.1016/j.polymer.2005.11.030

  • 加载中
    1. [1]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    2. [2]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    3. [3]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    4. [4]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    5. [5]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    6. [6]

      Binhan ZhaoZheng LiLan ZhengZhichao YeYuyang YuanShanshan ZhangBo LiangTianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810

    7. [7]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    8. [8]

      Zikang HuHengjie ZhangZhengqiu LiTianbao ZhaoZhipeng GuQijuan YuanBaoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527

    9. [9]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    10. [10]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    11. [11]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    12. [12]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    13. [13]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    14. [14]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    15. [15]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    16. [16]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    17. [17]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    18. [18]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    19. [19]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    20. [20]

      Dongmei DaiXiaobing LaiXiaojuan WangYunting YaoMengmin JiaLiang WangPengyao YanYaru QiaoZhuangzhuang ZhangBao LiDai-Huo Liu . Increasing (010) active plane of P2-type layered cathodes with hexagonal prism towards improved sodium-storage. Chinese Chemical Letters, 2024, 35(10): 109405-. doi: 10.1016/j.cclet.2023.109405

Metrics
  • PDF Downloads(8)
  • Abstract views(744)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return