Citation: Hong-Xiang Huang, Wen-Li He, Xiang-Hai Sheng, Wen-Jie Wu. Fabrication and luminescent properties of Eu(BMPPA)3BPy complex and its functionalized silica nanocomposites[J]. Chinese Chemical Letters, ;2016, 27(10): 1602-1606. doi: 10.1016/j.cclet.2016.03.031 shu

Fabrication and luminescent properties of Eu(BMPPA)3BPy complex and its functionalized silica nanocomposites

  • Corresponding author: Hong-Xiang Huang, hxhuang@fudan.edu.cn
  • Received Date: 5 January 2016
    Revised Date: 12 March 2016
    Accepted Date: 17 March 2016
    Available Online: 24 October 2016

Figures(6)

  • Luminescent silica nanocomposites functionalized with a Eu-complex have been prepared and characterized.The europium complex is composed of 2,2'-bipyridyl (BPy) and 2-(4-bromomethyl)-phenylpropionic acid (BMPPA),which contains highly active benzyl bromide substituents and can covalently bind with poly (4-vinylpyridine)(P4VP)-modified silica nanoparticles (nanoSiO2P4VP) to form nanoSiO2P4VPEuBPy composites.Microscopic images revealed that the nanoSiO2P4VPEuBPy composites easily formed aggregates,due to an inter-particle binding caused by the benzyl bromide among the composites.The as-prepared nanocomposites showed the typical emissions of Eu (III) ions at the wavelengths from 580 nm to 750 nm designated to the 5D07Fn transitions.Time-resolved fluorescence decay measurements revealed that the emission lifetime was approximately 0.204 ms and 0.576 ms for the nanoSiO2EuBPy composites,a little shorter than that in the Eu (BMPPA)3BPy complex.
  • 加载中
    1. [1]

      X.H. Wang, H.J. Chang, J. Xie. Recent developments in lanthanide-based luminescent probes[J]. Coord. Chem. Rev., 2014,273-274:201-212. doi: 10.1016/j.ccr.2014.02.001

    2. [2]

      C.S. Stan, M. Popa, D. Sutiman, P. Horlescu. Photoluminescent red, green and blue monoliths of new Eu(Ⅲ), Tb(Ⅲ) and Y(Ⅲ) complexes embedded in silica matrix[J]. Electron. Mater. Lett., 2014,10:827-835. doi: 10.1007/s13391-014-3240-5

    3. [3]

      S.J. Ryu, A. Kim, M.D. Kim. Photoluminescenteuropium(Ⅲ) complex intercalated in natural and synthetic clay minerals for enhanced latent fingerprint detection[J]. Appl. Clay Sci., 2014,101:52-59. doi: 10.1016/j.clay.2014.07.010

    4. [4]

      J.P. Martins, P. Martín-Ramos, C. Coya. Lanthanide tetrakis-β-diketonate dimers for solution-processed OLEDs[J]. Mater. Chem. Phys., 2014,147:1157-1164. doi: 10.1016/j.matchemphys.2014.06.073

    5. [5]

      Y. Hasegawa. Photofunctional lanthanoid complexes, coordination polymers, and nanocrystals for future photonic applications[J]. Bull. Chem. Soc. Jpn., 2014,87:1029-1057. doi: 10.1246/bcsj.20140155

    6. [6]

      W.X. Li, X.D. Xin, S.Y. Feng. Fluorescence enhancement of europium(Ⅲ) perchlorate by 1,10-phenanthroline on the 1-(naphthalen-2-yl)-2-(phenylsulthio)ethanone complex and luminescence mechanism[J]. Luminescence, 2014,29:810-817. doi: 10.1002/bio.2625

    7. [7]

      D.J. Wang, Y. Pi, H. Liu. Synthesis and spectroscopic behavior of highly luminescent trinuclear europium complexes with tris-b-diketone ligand[J]. J. Alloys Compd., 2014,613:13-17. doi: 10.1016/j.jallcom.2014.05.222

    8. [8]

      W.J. Wu, H.X. Huang, M. Chen, D.J. Qian. Synthesis and luminescent properties of a silylated-terpyridine derivative and its metalated complexes in solutions and selfassembled monolayers[J]. Chin. Chem. Lett., 2015,26:343-347. doi: 10.1016/j.cclet.2014.11.025

    9. [9]

      X.B. Sun, X.Z. Jin, W. Pan, J.P. Wang. Syntheses of new rare earth complexes with carboxymethylated polysaccharides and evaluation of their in vitro antifungal activities[J]. Carbohyd. Polym., 2014,113:194-199. doi: 10.1016/j.carbpol.2014.07.017

    10. [10]

      X.B. Gao, J. Yu, N. Li, H.Y. Yin, J.H. Yang. The preparation and fluorescence properties of europium nanoparticles[J]. Chin. Chem. Lett., 2007,18:1289-1292. doi: 10.1016/j.cclet.2007.07.010

    11. [11]

      H. Xu, Q. Sun, Z.F. An, Y. Wei, X.G. Liu. Electroluminescence from europium(Ⅲ) complexes[J]. Coord. Chem. Rev., 2015,293-294:228-249. doi: 10.1016/j.ccr.2015.02.018

    12. [12]

      M.L. Cable, J.P. Kirby, H.B. Gray, A. Ponce. Enhancement of anion binding in lanthanide optical sensors[J]. Acc. Chem. Res., 2013,46:2576-2584. doi: 10.1021/ar400050t

    13. [13]

      Q.P. Li, B. Yan. Luminescent nanoparticles prepared by encapsulating lanthanide chelates to silica sphere[J]. Colloid Polym. Sci., 2014,292:1385-1393. doi: 10.1007/s00396-014-3196-x

    14. [14]

      Q. Zhang, Y. Sheng, K.Y. Zheng. Novel organic-inorganic amorphous photoactive hybrid films with rare earth (Eu3+, Tb3+) covalently embedded into silicon-oxygen network via sol-gel process[J]. Mater. Res. Bull., 2015,70:379-384. doi: 10.1016/j.materresbull.2015.04.057

    15. [15]

      Y.F. Shao, B. Yan. Multi-component hybrids of surfactant functionalized europium tetrakis(β-diketonate) in MCM-41(m) and polymer modified ZnO for luminescence integration[J]. Microporous Mesoporous Mater., 2014,193:85-92. doi: 10.1016/j.micromeso.2014.03.019

    16. [16]

      J.X. Zhang, N. Prabhakar, T. Näreoja, J.M. Resenholm. Semiconducting polymer encapsulated mesoporous silica particles with conjugated europium complexes:toward enhanced luminescence under aqueous conditions[J]. ACS Appl. Mater. Interfaces, 2014,6:19064-19074. doi: 10.1021/am5050218

    17. [17]

      S.N.A. Jenie, S. Pace, B. Sciacca. Lanthanide luminescence enhancements in porous silicon resonant microcavities[J]. ACS Appl. Mater. Interfaces, 2014,6:12012-12021. doi: 10.1021/am500983r

    18. [18]

      A.P. Duarte, M. Gressier, M.J. Menu. Structural and luminescence properties of silica-based hybrids containing new silylated-diketonato europium(Ⅲ) complex[J]. J. Phys. Chem. C, 2012,116:505-515. doi: 10.1021/jp210338t

    19. [19]

      Q. Zhang, Y. Sheng, K.Y. Zheng. Novel luminescent lanthanide complexes assembling alumina/titania/silica hybrids through 2-phenylmalonic acid linkage[J]. J. Non-Cryst. Solids, 2015,413:34-38. doi: 10.1016/j.jnoncrysol.2015.01.020

    20. [20]

      M.J. Zhou, D.L. Han, X.L. Liu. Characterization and catalytic activity of a novel Fe nano-catalyst as efficient heterogeneous catalyst for selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol[J]. J. Mol. Catal. A-Chem., 2015,172-173:174-184.

    21. [21]

      Y. Yuan, N. Chen, R. Liu, S.W. Zhang, X.Y. Liu. A novel acrylic prepolymer/methacrylate modified nano-SiO2 composite used for negative photoresist[J]. Mater. Res. Bull., 2014,50:392-398. doi: 10.1016/j.materresbull.2013.11.024

    22. [22]

      R.K. Sharma, S. Sharma. Silica nanosphere-supported palladium(Ⅱ) furfural complex as a highly efficient and recyclable catalyst for oxidative amination of aldehydes[J]. Dalton Trans., 2014,43:1292-1304. doi: 10.1039/C3DT51928G

    23. [23]

      H.G. Liu, Y.I. Lee, S. Park, K. Jang, S.S. Kim. Photoluminescent behaviors of several kinds of europium ternary complexes doped in PMMA[J]. J. Lumin., 2004,110:11-16. doi: 10.1016/j.jlumin.2004.04.001

    24. [24]

      F. Wang, J.H. Sun, J.P. Wang, S.Y. Bai, X. Wu. Eu3+-modification of luminescent hybrid bimodal mesoporous silicas with various anions (NO3-, CH3COO-, and Cl-)[J]. Mater. Chem. Phys., 2014,145:471-475. doi: 10.1016/j.matchemphys.2014.02.050

  • 加载中
    1. [1]

      Junqing WuYiyang ZhangQingqing HongHui YangLifeng ZhangMing ZhangLei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165

    2. [2]

      Ying Xu Yan Pu Qiong Zhang Xi Kang Manzhou Zhu . Order-by-order control over the nonlinear optical properties of atomically precise nanoclusters. Chinese Journal of Structural Chemistry, 2025, 44(10): 100735-100735. doi: 10.1016/j.cjsc.2025.100735

    3. [3]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    4. [4]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    5. [5]

      Hongwei DingJingjing YangYongchen ShuaiDi WeiXueliang LiuGuiying LiLin JinJianliang ShenIn situ preparation of tannin-mediated CeO2@CuS nanocomposites for multimodal wound therapy. Chinese Chemical Letters, 2025, 36(6): 110286-. doi: 10.1016/j.cclet.2024.110286

    6. [6]

      Jian WangBaohui WangPin MaYifei ZhangHonghong GongBiyun PengSen LiangYunchuan XieHailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714

    7. [7]

      Hao ZhangHao LiuKe HuangQingxiu XiaHongjie XiongXiaohui LiuHui JiangXuemei Wang . Ionic exchange based intracellular self-assembly of pitaya-structured nanoparticles for tumor imaging. Chinese Chemical Letters, 2025, 36(6): 110281-. doi: 10.1016/j.cclet.2024.110281

    8. [8]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    9. [9]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    10. [10]

      Yue LiQianyu DingWansheng LiuYimeng SunLiyao LiuYe ZouYutao CuiJia ZhuChongan DiDaoben Zhu . Bipyridine-bridged Φ-shaped cyclo[8]thiophene[2]pyrrole: Synthesis and fluorescence properties. Chinese Chemical Letters, 2026, 37(2): 111989-. doi: 10.1016/j.cclet.2025.111989

    11. [11]

      Yan-Ling LiYue XuChen-Hong WangRui WangShuang-Quan Zang . Dye-stabilized atomically precise copper clusters for enhanced photocatalytic hydrogen evolution. Chinese Chemical Letters, 2025, 36(10): 111256-. doi: 10.1016/j.cclet.2025.111256

    12. [12]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    13. [13]

      Mengfan ZhangLingyan LiuPeng WeiWei FengTao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127

    14. [14]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    15. [15]

      Aoyun MengZhenhua LiGuoyuan XiongZhen LiJinfeng Zhang . S-scheme heterojunction Al6Si2O13/BiOBr with enhanced charge transfer effect for efficient and stable photocatalytic degradation of triazophos and dichlorvos pesticides. Acta Physico-Chimica Sinica, 2026, 42(5): 100186-0. doi: 10.1016/j.actphy.2025.100186

    16. [16]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    17. [17]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    18. [18]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    19. [19]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042

    20. [20]

      Xin Chen Meng Zhao Yan-Yuan Jia . Stable Eu(III)-based metal-organic framework for fluorescence sensing of benzaldehyde and its analogues. Chinese Journal of Structural Chemistry, 2025, 44(3): 100445-100445. doi: 10.1016/j.cjsc.2024.100445

Metrics
  • PDF Downloads(0)
  • Abstract views(1630)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return