Citation: Xiao-Xu Ma, Cui-Cui Wang, Wen-Sheng Cai, Xue-Guang Shao. Quantification of albumin in urine using preconcentration and near-infrared diffuse reflectance spectroscopy[J]. Chinese Chemical Letters, ;2016, 27(10): 1597-1601. doi: 10.1016/j.cclet.2016.03.008 shu

Quantification of albumin in urine using preconcentration and near-infrared diffuse reflectance spectroscopy

  • Corresponding author: Xue-Guang Shao, xshao@nankai.edu.cn
  • Received Date: 1 February 2016
    Revised Date: 1 March 2016
    Accepted Date: 4 March 2016
    Available Online: 16 October 2016

Figures(3)

  • Urinary albumin is an important diagnostic and prognostic marker for cardiorenal disease. Recent studies have shown that elevation of albumin excretion even in normal concentration range is associated with increased cardiorenal risk. Therefore, accurate measurement of urinary albumin in normal concentration range is necessary for clinical diagnosis. In this work, thiourea-functionalized silica nanoparticles are prepared and used for preconcentration of albumin in urine. The adsorbent with the analyte was then used for near-infrared diffuse reflectance spectroscopy measurement directly and partial least squares model was established for quantitative prediction. Forty samples were taken as calibration set for establishing PLS model and 17 samples were used for validation of the method. The correlation coefficient and the root mean squared error of cross validation is 0.9986 and 0.43, respectively. Residual predictive deviation value of the model is as high as 18.8. The recoveries of the 17 validation samples in the concentration range of 3.39-24.39 mg/L are between 95.9%-113.1%. Therefore, the method may provide a candidate method to quantify albumin excretion in urine.
  • 加载中
    1. [1]

      S.J. Chadban, E.M. Briganti, P.G. Kerr. Prevalence of kidney damage in Australian adults:the AusDiab kidney study[J]. J. Am. Soc. Nephrol., 2003,14:S131-S138. doi: 10.1097/01.ASN.0000070152.11927.4A

    2. [2]

      L.X. Zhang, F. Wang, L. Wang. Prevalence of chronic kidney disease in China:a cross-sectional survey[J]. Lancet, 2012,379:815-822. doi: 10.1016/S0140-6736(12)60033-6

    3. [3]

      A.S. Levey, J. Coresh, E. Balk. National Kidney Foundation practice guidelines for chronic kidney disease:evaluation, classification, and stratification[J]. Ann. Intern. Med., 2003,139:137-147. doi: 10.7326/0003-4819-139-2-200307150-00013

    4. [4]

      G.T. Hernandez, H. Nasri. World Kidney Day 2014:increasing awareness of chronic kidney disease and aging[J]. J. Renal. Inj. Prev., 2014,3:3-4.  

    5. [5]

      W.G. Couser, G. Remuzzi, S. Mendis, M. Tonelli. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases[J]. Kidney Int., 2011,80:1258-1270. doi: 10.1038/ki.2011.368

    6. [6]

      D. Lim, D.Y. Lee, S.H. Cho. Diagnostic accuracy of urine dipstick for proteinuria in older outpatients[J]. Kidney Res. Clin. Pract., 2014,33:199-203. doi: 10.1016/j.krcp.2014.10.003

    7. [7]

      J. Barratt, P. Topham. Urine proteomics:the present and future of measuring urinary protein components in disease[J]. Can. Med. Assoc. J., 2007,177:361-368. doi: 10.1503/cmaj.061590

    8. [8]

      W.G. Miller, D.E. Bruns, G.L. Hortin. Current issues in measurement and reporting of urinary albumin excretion[J]. Clin. Chem., 2009,55:24-38.  

    9. [9]

      P.A. McFarlane. Testing for albuminuria in 2014[J]. Can. J. Diabetes, 2014,38:372-375. doi: 10.1016/j.jcjd.2014.07.221

    10. [10]

      A. Shaikh, J.C. Seegmiller, T.M. Borland. Comparison between immunoturbidimetry, size-exclusion chromatography, and LC-MS to quantify urinary albumin[J]. Clin. Chem., 2008,54:1504-1510. doi: 10.1373/clinchem.2008.107508

    11. [11]

      R. Liu, G. Li, X.F. Cui. Methodological evaluation and comparison of five urinary albumin measurements[J]. J. Clin. Lab. Anal., 2011,25:324-329. doi: 10.1002/jcla.20477

    12. [12]

      J.R. Barr, V.L. Maggio, D.G. Patterson Jr.. Isotope dilution-mass spectrometric quantification of specific proteins:model application with apolipoprotein A-I[J]. Clin. Chem., 1996,42:1676-1682.  

    13. [13]

      J.C. Seegmiller, D.R. Barnidge, B.E. Burns. Quantification of urinary albumin by using protein cleavage and LC-MS/MS[J]. Clin. Chem., 2009,55:1100-1107. doi: 10.1373/clinchem.2008.115543

    14. [14]

      J.M. Dersch, T.T.T.N. Nguyen, J. Østergaard, S. Stürup, B. Gammelgaard. Selective analysis of human serum albumin based on SEC-ICP-MS after labelling with iophenoxic acid[J]. Anal. Bioanal. Chem., 2015,407:2829-2836. doi: 10.1007/s00216-015-8507-7

    15. [15]

      E.P. Diamandis. Protein quantification by mass spectrometry:is it ready for prime time?[J]. Clin. Chem, 2009,55:1427-1430. doi: 10.1373/clinchem.2009.128058

    16. [16]

      A. Beasley-Green, N.M. Burris, D.M. Bunk, K.W. Phinney. Multiplexed LC-MS/MS assay for urine albumin[J]. J. Proteome Res., 2014,13:3930-3939. doi: 10.1021/pr500204c

    17. [17]

      A.M. Hawkridge. Practical considerations and current limitations in quantitative mass spectrometry-based proteomics, in:C.E. Eyers, S.J. Gaskell (Eds.), Quantitative Proteomics[J]. RSC Publishing, Cambridge, 2014:pp.3-25.  

    18. [18]

      J.W. Hall, A. Pollard. Near-infrared spectrophotometry:a new dimension in clinical chemistry[J]. Clin. Chem., 1992,38:1623-1631.  

    19. [19]

      W.J. Dong, Y.N. Ni, S. Kokot. Quantitative analysis of two adulterants in Cynanchum stauntonii by near-infrared spectroscopy combined with multi-variate calibrations[J]. Chem. Pap., 2012,66:1083-1091.  

    20. [20]

      X.G. Shao, X.H. Bian, J.J. Liu, M. Zhang, W.S. Cai. Multivariate calibration methods in near infrared spectroscopic analysis[J]. Anal. Methods, 2010,2:1662-1666. doi: 10.1039/c0ay00421a

    21. [21]

      C.J. Cui, W.S. Cai, X.G. Shao. Near-infrared diffuse reflectance spectroscopy with sample spots and chemometrics for fast determination of bovine serum albumin in micro-volume samples[J]. Chin. Chem. Lett., 2013,24:67-69. doi: 10.1016/j.cclet.2012.12.012

    22. [22]

      X.M. Wei, Z.X. Huang, W. Zhang, Y.P. Du. Improving the sensitivity of NIR spectroscopy with an enrichment technique:determining a trace analyte of ethyl carbamate[J]. Anal. Sci., 2007,23:853-856. doi: 10.2116/analsci.23.853

    23. [23]

      J.H. Li, Y. Zhang, W.S. Cai, X.G. Shao. Simultaneous determination of mercury, lead and cadmium ions in water using near-infrared spectroscopy with preconcentration by thiol-functionalized magnesium phyllosilicate clay[J]. Talanta, 2011,84:679-683. doi: 10.1016/j.talanta.2011.01.072

    24. [24]

      N. Sheng, W.S. Cai, X.G. Shao. An approach by using near-infrared diffuse reflectance spectroscopy and resin adsorption for the determination of copper, cobalt and nickel ions in dilute solution[J]. Talanta, 2009,79:339-343. doi: 10.1016/j.talanta.2009.03.059

    25. [25]

      Y. Hao, W.S. Cai, X.G. Shao. A strategy for enhancing the quantitative determination ability of the diffuse reflectance near-infrared spectroscopy, Spectrochim. Acta A Mol[J]. Biomol. Spectrosc, 2009,72:115-119. doi: 10.1016/j.saa.2008.08.011

    26. [26]

      Y. Zhang, Y. Hao, W.S. Cai, X.G. Shao. Simultaneous determination of phenol and p-nitrophenol in wastewater using near-infrared diffuse reflectance spectroscopy with adsorption preconcentration[J]. Anal. Methods, 2011,3:703-708. doi: 10.1039/c0ay00775g

    27. [27]

      Y.F. Yang, J.R. Tu, W.S. Cai, X.G. Shao. Feasibility for quantitative determination of deoxyribonucleic acid by using near-infrared diffuse reflectance spectroscopy[J]. Talanta, 2012,99:871-874. doi: 10.1016/j.talanta.2012.07.049

    28. [28]

      L.J. Liu, R.X. Zhuo. Activation and silanization of porous silica beads[J]. Ion Exch. Adsorpt., 1995,11:541-544.

    29. [29]

      G.B. Yang, D.M. Xu, Z.L. Zhao, K.D. Zhang. Synthesis and characterization of a sixarm initiating core containing 1,3,5-triazine[J]. Chem. Res. Appl., 2009,21:243-247.  

    30. [30]

      L.S. Bai, X.Y. Wen. Preparation of thiourea modified crosslinked chitosan and its adsorption to bovine serum albumin[J]. J. Anhui Univ. Tech., 2006,23:399-403.  

    31. [31]

      S. Wold. Cross-validatory estimation of the number of components in factor and principal components models[J]. Technometrics, 1978,20:397-405. doi: 10.1080/00401706.1978.10489693

    32. [32]

      R.J. Barnes, M.S. Dhanoa, S.J. Lister. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra[J]. Appl. Spectrosc., 1989,43:772-777. doi: 10.1366/0003702894202201

    33. [33]

      P. Geladi, D. MacDougall, H. Martens. Linearization and scatter-correction for near-infrared reflectance spectra of meat[J]. Appl. Spectrosc., 1985,39:491-500. doi: 10.1366/0003702854248656

    34. [34]

      A. Savitzky, M.J.E. Golay. Smoothing and differentiation of data by simplified least squares procedures[J]. Anal. Chem., 1964,36:1627-1639. doi: 10.1021/ac60214a047

    35. [35]

      X.G. Shao, A.K.M. Leung, F.T. Chau. Wavelet:a new trend in chemistry[J]. Acc. Chem. Res., 2003,36:276-283. doi: 10.1021/ar990163w

    36. [36]

      S.J. Baek, A. Park, J. Kim, A.G. Shen, J.M. Hu. A simple background elimination method for Raman spectra, Chemom. Intel[J]. Lab. Syst, 2009,98:24-30. doi: 10.1016/j.chemolab.2009.04.007

    37. [37]

      D.F. Malley, P.C. Williams. Use of near-infrared reflectance spectroscopy in prediction of heavy metals in freshwater sediment by their association with organic matter[J]. Environ. Sci. Technol., 1997,31:3461-3467. doi: 10.1021/es970214p

    38. [38]

      M. Forouzangohar, D. Cozzolino, R.S. Kookana. Direct comparison between visible near- and mid-infrared spectroscopy for describing diuron sorption in soils[J]. Environ. Sci. Technol., 2009,43:4049-4055. doi: 10.1021/es8029945

  • 加载中
    1. [1]

      Jie WEIQing ZHOUDandan DINGXiang JINGFei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435

    2. [2]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    3. [3]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    4. [4]

      Zhijuan NiuPeizhe SunKwangnak KohChangping Li . Ultrasensitive electrochemical sensor based on para-sulfonatocalix[4]arene functionalized gold nanoparticles for sulfamethazine detection. Chinese Chemical Letters, 2025, 36(11): 110844-. doi: 10.1016/j.cclet.2025.110844

    5. [5]

      Ying ZhangChuang ShenJiaxu ZhangQi ShenFei XuShengheng WangJiuyi HuFaisal SaleemFeng HuangZhimin Luo . Ultrasmall PtCu nanosheets as a broadband phototheranostic agent in near-infrared biowindow. Chinese Chemical Letters, 2025, 36(6): 111059-. doi: 10.1016/j.cclet.2025.111059

    6. [6]

      Haixia WuKailu Guo . Sulfur reduction reaction mechanism elucidated with in situ Raman spectroscopy. Chinese Chemical Letters, 2025, 36(6): 110654-. doi: 10.1016/j.cclet.2024.110654

    7. [7]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    8. [8]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    9. [9]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    10. [10]

      Dandan TangNingge XuYuyang FuWei PengJinsheng WuHeng LiuFabiao Yu . Rationally designed an innovative proximity labeling near-infrared fluorogenic probe for imaging of peroxynitrite in acute lung injury. Chinese Chemical Letters, 2025, 36(5): 110082-. doi: 10.1016/j.cclet.2024.110082

    11. [11]

      Meiling ZhaoYao LuYutao ZhangHaoyun XueZhiqian Guo . Ultra-high signal-to-noise ratio near-infrared chemiluminescent probe for in vivo sensing singlet oxygen. Chinese Chemical Letters, 2025, 36(5): 110105-. doi: 10.1016/j.cclet.2024.110105

    12. [12]

      Yupeng LiuHui WangSongnan Qu . Review on near-infrared absorbing/emissive carbon dots: From preparation to multi-functional application. Chinese Chemical Letters, 2025, 36(5): 110618-. doi: 10.1016/j.cclet.2024.110618

    13. [13]

      Keliang LiGuoqiang DongShanchao WuChunquan Sheng . Discovery of an activatable near-infrared fluorescent and theranostic PROTAC for tumor-targeted detecting and degrading of BRD4. Chinese Chemical Letters, 2025, 36(6): 110280-. doi: 10.1016/j.cclet.2024.110280

    14. [14]

      Tong-Tong ZhouGuan-Yu DingXue LiLi-Li WenXiao-Xu PangYing-Chen DuanJu-Yang HeGuo-Gang ShanZhong-Min Su . Design of near-infrared aggregation-induced emission photosensitizers by π-bridge engineering for boosting theranostic efficacy. Chinese Chemical Letters, 2025, 36(6): 110341-. doi: 10.1016/j.cclet.2024.110341

    15. [15]

      Li LiJiale WenXiaojun ZhangShuwen FuZixuan ChenKai HuangLuyue FangTinghe ZhaoPeipei ZhangXingshu Li . A near-infrared naphthalocyanine photosensitizer with superior light absorption and renal clearance for type-Ⅰ photodynamic and photothermal combination therapy. Chinese Chemical Letters, 2025, 36(6): 110290-. doi: 10.1016/j.cclet.2024.110290

    16. [16]

      Xianzhu LuoFeifei YuRui WangTian SuPan LuoPengfei WenFabiao Yu . A near-infrared two-photon fluorescent probe for the detection of HClO in inflammatory and tumor-bearing mice. Chinese Chemical Letters, 2025, 36(7): 110531-. doi: 10.1016/j.cclet.2024.110531

    17. [17]

      Jingjing ZhangFei YangLiying ZhangRan LiGuo WangYanqing XuWei Wei . Stable radicals in bacteria composites hybridized by a doubly-strapped perylene diimide for near-infrared photothermal conversion. Chinese Chemical Letters, 2025, 36(7): 110627-. doi: 10.1016/j.cclet.2024.110627

    18. [18]

      Xianghan ZhangYuan QinHuaicong ZhangYutian CaoHaixing ZhuYingdi TangZimeng MaZehua LiJialin ZhouQunyan DongPeng YangYuqiong XiaZhongliang Wang . An aggregation-independent and rotor-specific TPE-cyanine probe for in vivo near-infrared fluorescent imaging. Chinese Chemical Letters, 2025, 36(9): 110715-. doi: 10.1016/j.cclet.2024.110715

    19. [19]

      Xu QuBaohua JiHaocheng GongGuangwei WangLiang-Liang GaoJing ZhangJianjian ZhangYuan Guo . Dual-emissive near-infrared fluorogenic probe with enhanced cellular uptake capability for sensitive tracking of cellular polarity. Chinese Chemical Letters, 2025, 36(10): 110766-. doi: 10.1016/j.cclet.2024.110766

    20. [20]

      Luolin WangXing LiangHanwen ChiWeiying Lin . A dual-targeted near-infrared fluorescence lifetime probe for detecting viscosity heterogeneity in arthritic mice. Chinese Chemical Letters, 2025, 36(12): 110962-. doi: 10.1016/j.cclet.2025.110962

Metrics
  • PDF Downloads(2)
  • Abstract views(1279)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return