Citation: Ding Jian-Wei, Wang Rui. A new green system of HPW@MOFs catalyzed desulfurization using O2 as oxidant[J]. Chinese Chemical Letters, ;2016, 27(5): 655-658. doi: 10.1016/j.cclet.2016.03.005 shu

A new green system of HPW@MOFs catalyzed desulfurization using O2 as oxidant

  • Corresponding author: Wang Rui, wangrui@sdu.edu.cn
  • Received Date: 24 January 2016
    Revised Date: 29 February 2016
    Accepted Date: 4 March 2016
    Available Online: 12 May 2016

Figures(8)

  • A series of crystalline compounds were obtained from simple one-step hydrothermal reaction of copper nitrate, benzentricaboxylate and different Keggin polyoxometalates. Phosphotungstic acid immobilized in host matrix was selected for the first time as a recyclable and efficient catalyst in oxidative desulfurization process, under eco-sustainable conditions supported by the green oxidant O2 and the green extracting agent distilled water. The efficiency of desulfurization with air was studied and it is possible to use air as green oxidant in desulfurization. Moreover, the catalyst is effective for the desulfurization of real diesel.
  • 加载中
    1. [1]

      Ma X.L., Sakanishi K., Mochida I.. Hydrodesulfurization reactivities of various sulfur compounds in diesel fuel[J]. Ind. Eng. Chem. Res., 1994,33:218-222.

    2. [2]

      Zhang G.F., Wan R., Yu F.L., Zhao H.X.. Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst[J]. Chem. Pap., 2009,63:617-619.

    3. [3]

      Zhang W., Zhang H., Xiao J.. Carbon nanotube catalysts for oxidative desulfurization of a model diesel fuel using molecular oxygen[J]. Green Chem., 2014,16:211-220.

    4. [4]

      Wang J.L., Zhao D.S., Li K.X.. Oxidative desulfurization of dibenzothiophene using ozone and hydrogen peroxide in ionic liquid[J]. Energy Fuels, 2010,24:2527-2529.

    5. [5]

      Nguyen L.T.L., Nguyen C.V., Dang G.H., Le K.K.A., Phan N.T.S.. Towards applications of metal-organic frameworks in catalysis:Friedel-Crafts acylation reaction over IRMOF-8 as an efficient heterogeneous catalyst[J]. J. Mol. Catal. A:Chem., 2011,349:28-35.

    6. [6]

      Rowsell J.L.C., Yaghi O.M.. Strategies for hydrogen storage in metal-organic frameworks[J]. Angew. Chem. Int. Ed. Engl., 2005,44:4670-4679.

    7. [7]

      Zhou X., Zhang Y., Yang X.G., Zhao L.Z., Wang G.Y.. Functionalized IRMOF-3 as efficient heterogeneous catalyst for the synthesis of cyclic carbonates[J]. J. Mol. Catal. A:Chem., 2012,361-362:12-16.

    8. [8]

      Zhang L., Hu Y.H.. Desorption of dimethylformamide from Zn4O(C8H4O4)3 framework[J]. Appl. Surf. Sci., 2011,257:3392-3398.

    9. [9]

      Hu X.F., Lu Y.K., Dai F.N., Liu C.G., Liu Y.Q.. Host-guest synthesis and encapsulation of phosphotungstic acid in MIL-101 via "bottle around ship":an effective catalyst for oxidative desulfurization[J]. Microporous Mesoporous Mater., 2013,170:36-44.

    10. [10]

      Rafiee E., Nobakht N.. Keggin type heteropoly acid, encapsulated in metal-organic framework:a heterogeneous and recyclable nanocatalyst for selective oxidation of sulfides and deep desulfurization of model fuels[J]. J. Mol. Catal. A:Chem., 2015,398:17-25.

    11. [11]

      Ma X.L., Zhou A.N., Song C.S.. A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption[J]. Catal. Today, 2007,123:276-284.

    12. [12]

      Zhou X.R., Li J., Wang X.N., Jin K., Ma W.. Oxidative desulfurization of dibenzothiophene based on molecular oxygen and iron phthalocyanine[J]. Fuel Process. Technol., 2009,90:317-323.

    13. [13]

      Sampanthar J.T., Xiao H., Dou J.. A novel oxidative desulfurization process to remove refractory sulfur compounds from diesel fuel[J]. Appl. Catal. B:Environ., 2006,63:85-93.

    14. [14]

      Murata S., Murata K., Kidena K., Nomura M.. A novel oxidative desulfurization system for diesel fuels with molecular oxygen in the presence of cobalt catalysts and aldehydes[J]. Energy Fuels, 2004,18:116-121.

    15. [15]

      Sun C.Y., Liu S.X., Liang D.D.. Highly stable crystalline catalysts based on a microporous metal-organic framework and polyoxometalates[J]. J. Am. Chem. Soc., 2009,131:1883-1888.

    16. [16]

      Kozhevnikov I.V.. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions[J]. Chem. Rev., 1998,98:171-198.

    17. [17]

      Moffat J.B., McMonagle J.B., Taylor D.. Microporous heteropoly oxometalate heterogeneous catalysis[J]. Solid State Ionics, 1988,26:101-108.

    18. [18]

      Deltcheff C.R., Fournier M., Franck R.. Vibrational investigations of polyoxometalates. 2. Evidence for anion-anion interactions in molybdenum(Ⅵ) and tungsten(Ⅵ) compounds related to the Keggin Structure[J]. Inorg. Chem., 1983,22:207-216.

    19. [19]

      Cychosz K.A., Wong-Foy A.G., Matzger A.J.. Liquid phase adsorption by microporous coordination polymers:removal of organosulfur compounds[J]. J. Am. Chem. Soc., 2008,130:6938-6939.

    20. [20]

      Khan N.A., Hasan Z., Jhung S.H.. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs):a review[J]. J. Hazard. Mater., 2013,244-245:444-456.

  • 加载中
    1. [1]

      Cheng ChengNasir AliJi LiuJuan QiaoMing WangLi Qi . Construction of degradable liposome-templated microporous metal-organic frameworks with commodious space for enzymes. Chinese Chemical Letters, 2024, 35(11): 109812-. doi: 10.1016/j.cclet.2024.109812

    2. [2]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2024.100210

    3. [3]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    4. [4]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    5. [5]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    6. [6]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    7. [7]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    8. [8]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    9. [9]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    10. [10]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    11. [11]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    12. [12]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    13. [13]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    14. [14]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    15. [15]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    16. [16]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    17. [17]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    18. [18]

      Yunlong LiXinyu ZhangShuang LiuChunsheng LiQiang WangJin YeYong LuJiating Xu . Engineered iron-based metal-organic frameworks nanoplatforms for cancer theranostics: A mini review. Chinese Chemical Letters, 2025, 36(2): 110501-. doi: 10.1016/j.cclet.2024.110501

    19. [19]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    20. [20]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

Metrics
  • PDF Downloads(3)
  • Abstract views(657)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return