Citation: Wang Hai-Xia, Wu Rong, Wei Shun-Hang, Yu Li-Rui, Jian Ji-Kang, Hou Juan, Wang Jing, Zhang Hong-Yan, Sun Yan-Fei. One-pot solvothermal synthesis of ZnTe/RGO nanocomposites and enhanced visible-light photocatalysis[J]. Chinese Chemical Letters, ;2016, 27(9): 1572-1576. doi: 10.1016/j.cclet.2016.03.003 shu

One-pot solvothermal synthesis of ZnTe/RGO nanocomposites and enhanced visible-light photocatalysis

  • Corresponding author: Wu Rong, wurongxju@sina.com
  • Received Date: 1 February 2016
    Revised Date: 25 February 2016
    Accepted Date: 1 March 2016
    Available Online: 14 September 2016

Figures(7)

  • Zinc telluride/reduced graphene oxide (ZnTe/RGO) nanocomposites are synthesized by a one-pot, facile, solvothermal process using hydrazine hydrate as the reducing agent. Hydrazine hydrate not only promoted the formation of ZnTe nanoparticles but also reduced GO to RGO. The formation of ZnTe/RGO is demonstrated by different techniques. In addition, the experimental results suggest a possible formation mechanism of these nanocomposites. Finally, due to the transfer of the photo-generated electrons between ZnTe and RGO resulting in low electrons/holes recombination, the as-prepared nanocomposites of ZnTe/RGO exhibited strongly enhanced photocatalytic activity for the bleaching of methyl blue (MB) dye under visible light irradiation.
  • 加载中
    1. [1]

      Kumar S., Surendar T., Baruah A., Shanker V.. Synthesis of a novel and stable gC3N4-Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation[J]. J. Mater. Chem. A, 2013,1:5333-5340. doi: 10.1039/c3ta00186e

    2. [2]

      Wang S.P., Li W., Dong Y.Y., Zhao Y.J., Ma X.B.. Effects of potassium promoter onthe performance of PdCl2-CuCl2/AC catalysts for the synthesis of dimethyl carbonate from CO and methyl nitrite[J]. Chin. Chem. Lett., 2015,26:1359-1363. doi: 10.1016/j.cclet.2015.06.008

    3. [3]

      Zhang L.H., Yang H.Q., Yu J.. Controlled synthesis and photocatalytic activity of ZnSe nanostructured assemblies with different morphologies and crystalline phases[J]. J. Phys. Chem. C, 2009,113:5434-5443. doi: 10.1021/jp810385v

    4. [4]

      Wu Z.C., Wang H., Xue Y.J., Li B.E., Geng B.Y.. ZnO nanorods/ZnSe heteronanostructure arrays with a tunable microstructure of ZnSe shell for visible light photocatalysis[J]. J. Mater. Chem. A, 2014,2:17502-17510. doi: 10.1039/C4TA02989E

    5. [5]

      Wu X.P., Gu J., Zhou S.M.. Red bayberry-like ZnTe microstructures:controlled synthesis, growth mechanism and enhanced photocatalytic performance[J]. J. Alloys Compd., 2015,627:166-173. doi: 10.1016/j.jallcom.2014.11.199

    6. [6]

      Ehsan M.F., He T.. In situ synthesis of ZnO/ZnTe common cation heterostructure and its visible-light photocatalytic reduction of CO2 into CH4[J]. Appl. Catal., B:Environ., 2015,166-167:345-352. doi: 10.1016/j.apcatb.2014.11.058

    7. [7]

      Sun Y.H., Zhao Q., Gao J.Y.. In situ growth, structure characterization, and enhanced photocatalysis of high-quality, single-crystalline ZnTe/ZnO branched nanoheterostructures[J]. Nanoscale, 2011,3:4418-4426. doi: 10.1039/c1nr10922g

    8. [8]

      Ehsan M.F., Ashiq M.N., He T.. Hollow and mesoporous ZnTe microspheres:synthesis and visible-light photocatalytic reduction of carbon dioxide into methane[J]. RSC Adv., 2015,5:6186-6194. doi: 10.1039/C4RA13593H

    9. [9]

      Liu Y.T., Zhang X.L., Liu R.H.. Fabrication and photocatalytic activity of highefficiency visible-light-responsive photocatalyst ZnTe/TiO2 nanotube arrays[J]. J. Solid State Chem., 2011,184:684-689. doi: 10.1016/j.jssc.2011.01.024

    10. [10]

      Liu W.J., Cai J.Y., Li Z.H.. Self-Assembly of semiconductor nanoparticles/reduced graphene oxide (RGO) composite aerogels for enhanced photocatalytic performance and facile recycling in aqueous photocatalysis[J]. ACS Sustainable Chem. Eng., 2015,3:277-282. doi: 10.1021/sc5006473

    11. [11]

      Jiang H., Dai Y.H., Hu Y.J., Chen W.N., Li C.Z.. Nanostructured ternary nanocomposite of rGO/CNTs/MnO2 for high-rate supercapacitors[J]. ACS Sustainable Chem. Eng., 2014,2:70-74. doi: 10.1021/sc400313y

    12. [12]

      Bai S.L., Chen C., Luo R.X., Chen A.F., Li D.Q.. Synthesis of MoO3/reduced graphene oxide hybrids and mechanism of enhancing H2S sensing performances[J]. Sens. Actuators, B:Chem., 2015,216:113-120. doi: 10.1016/j.snb.2015.04.036

    13. [13]

      Bera R., Kundu S., Patra A.. 2D hybrid nanostructure of reduced graphene oxide-CdS nanosheet for enhanced photocatalysis[J]. ACS Appl. Mater. Interfaces, 2015,7:13251-13259. doi: 10.1021/acsami.5b03800

    14. [14]

      Jin C.J., Cui X.Q., Tian H.W.. Photo-less catalysis of TiO2-reduced graphene oxides[J]. Chem. Phys. Lett., 2014,608:229-234. doi: 10.1016/j.cplett.2014.06.007

    15. [15]

      Liu H., Lv T., Wu X.H., Zhu X.C., Zhu Z.F.. Preparation and enhanced photocatalytic activity of CdS@RGO core-shell structural microspheres[J]. Appl. Surf. Sci., 2014,305:242-246. doi: 10.1016/j.apsusc.2014.03.045

    16. [16]

      Li Z.Q., Wang H.L., Zi L.Y., Zhang J.J., Zhang Y.S.. Preparation and photocatalytic performance of magnetic TiO2-Fe3O4/graphene (RGO) composites under VISlight irradiation[J]. Ceram. Int., 2015,41:10634-10643. doi: 10.1016/j.ceramint.2015.04.163

    17. [17]

      Uddin A.S.M.I., Lee K.W., Chung G.S.. Acetylene gas sensing properties of an Agloaded hierarchical ZnO nanostructure-decorated reduced graphene oxide hybrid[J]. Sens. Actuators, B:Chem., 2015,216:33-40. doi: 10.1016/j.snb.2015.04.028

    18. [18]

      Rajesh U.C., Wang J.F., Prescott S., Tsuzuki T., Rawat D.S.. RGO/ZnO nanocomposite:an efficient, sustainable, heterogeneous, amphiphilic catalyst for synthesis of 3-substituted indoles in water[J]. ACS Sustainable Chem. Eng., 2015,3:9-18. doi: 10.1021/sc500594w

    19. [19]

      Ullah K., Kim Y.H., Lee B.E.. Visible light induced catalytic properties of CdSegraphene nanocomposites and study of its bactericidal effect[J]. Chin. Chem. Lett., 2014,25:941-946. doi: 10.1016/j.cclet.2014.03.050

    20. [20]

      Xiang Q.J., Yu J.Q., Jaroniec M.. Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets[J]. Nanoscale, 2011,3:3670-3678. doi: 10.1039/c1nr10610d

    21. [21]

      Liu L., Kou J.H., Guo D.M.. Synthesis of thiol-functionalized TiO2 nanocomposite and photocatalytic degradation for PAH under visible light irradiation[J]. Chin. Chem. Lett., 2009,20:1366-1370. doi: 10.1016/j.cclet.2009.06.026

    22. [22]

      Huang J., Chang Q., Ding Y.B., Han X.Y., Tang H.Q.. Catalytic oxidative removal of 2, 4-dichlorophenol by simultaneous use of horseradish peroxidase and graphene oxide/Fe3O4 as catalyst[J]. Chem. Eng. J., 2014,254:434-442. doi: 10.1016/j.cej.2014.05.136

    23. [23]

      Wang P., Jiang T.F., Zhu C.Z.. One-step, Solvothermal synthesis of grapheneCdS and graphene-ZnS quantum dot nanocomposites and their interesting photovoltaic properties[J]. Nano Res., 2010,3:794-799. doi: 10.1007/s12274-010-0046-0

    24. [24]

      Pan S.G., Liu X.H.. ZnS-graphene nanocomposite:synthesis, characterization and optical properties[J]. J. Solid State Chem., 2012,191:51-56. doi: 10.1016/j.jssc.2012.02.048

    25. [25]

      Ray S.C., Bhunia S.K., Saha A., Jana N.R.. Graphene oxide (GO)/reduced-GO and their composite with conducting polymer nanostructure thin films for nonvolatile memory device[J]. Microelectron. Eng., 2015,146:48-52. doi: 10.1016/j.mee.2015.04.001

    26. [26]

      Jia Z.F., Chen T.D., Wang J.. Synthesis, characterization and tribological properties of Cu/reduced graphene oxide composites[J]. Tribol. Int., 2015,88:17-24. doi: 10.1016/j.triboint.2015.02.028

    27. [27]

      Song H.J., Li N.. Frictional behavior of oxide graphene nanosheets as water-base lubricant additive[J]. Appl. Phys. A, 2011,105:827-832. doi: 10.1007/s00339-011-6636-1

    28. [28]

      Pham T.A., Kim J.S., Kim J.S., Jeong Y.T.. One-step reduction of graphene oxide with L-glutathione[J]. Colloids Surf., A:Physicochem. Eng. Aspects, 2011,384:543-548. doi: 10.1016/j.colsurfa.2011.05.019

    29. [29]

      Xue L.P., Shen C.F., Zheng M.B.. Hydrothermal synthesis of graphene-ZnS quantum dot nanocomposites[J]. Mater. Lett., 2011,65:198-200. doi: 10.1016/j.matlet.2010.09.087

    30. [30]

      Gupta B., Melvin A.A., Matthews T.. Facile gamma radiolytic methodology for TiO2-rGO synthesis:effect on photo-catalytic H2 evolution[J]. Int. J. Hydrogen Energy, 2015,40:5815-5823. doi: 10.1016/j.ijhydene.2015.02.102

    31. [31]

      Hajishafiee H., Sangpour P., S. N.. Tabrizi, Facile synthesis and photocatalytic performance of WO3/rGO nanocomposite for degradation of 1-naphthol[J]. Nano, 2015,101550072. doi: 10.1142/S1793292015500721

    32. [32]

      Liu W.J., Cai J.Y., Ding Z.X., Li Z.H.. TiO2/RGO composite aerogels with controllable and continuously tunable surface wettability for varied aqueous photocatalysis[J]. Appl. Catal., B:Environ., 2015,174-175:421-426. doi: 10.1016/j.apcatb.2015.03.041

    33. [33]

      Wei S.H., Wu R., Jian J.K.. Graphene oxide/core-shell structured TiO2@TiO2-x nanocomposites with highly efficient visible-light photocatalytic performance[J]. RSC Adv., 2015,5:40348-40351. doi: 10.1039/C5RA01458A

  • 加载中
    1. [1]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    2. [2]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    3. [3]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    4. [4]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    5. [5]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    6. [6]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    7. [7]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2024.100195

    8. [8]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    9. [9]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463

    10. [10]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    11. [11]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    12. [12]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    13. [13]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    14. [14]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

    15. [15]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    16. [16]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    17. [17]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    18. [18]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    19. [19]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    20. [20]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

Metrics
  • PDF Downloads(0)
  • Abstract views(541)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return