Enantioselective synthesis of 10-allylanthrones via iridium-catalyzed allylic substitution reaction
- Corresponding author: Wu Xin-Yan, xinyanwu@ecust.edu.cn You Shu-Li, slyou@sioc.ac.cn
Citation: Zhao Zheng-Le, Gu Qing, Wu Xin-Yan, You Shu-Li. Enantioselective synthesis of 10-allylanthrones via iridium-catalyzed allylic substitution reaction[J]. Chinese Chemical Letters, ;2016, 27(5): 619-622. doi: 10.1016/j.cclet.2016.02.017
S. Coffey, Rodd's Chemistry of Carbon Compounds, vol. Ⅲ, Part H, Elsevier, New York, 1979.
(a) D.W. Cameron, C.E. Skene, Synthesis of the androgen-receptor antagonists (±)-Ws9761 A and B, Aust. J. Chem. 49(1996) 617-624;
(b) K. Müller, H. Prinz, Antipsoriatic anthrones with modulated redox properties. 4. Synthesis and biological activity of novel 9,10-dihydro-1,8-dihydroxy-9-oxo-2-anthracenecarboxylic and-hydroxamic acids, J. Med. Chem. 40(1997) 2780-2787;
(c) T. Pecere, M.V. Gazzola, C. Mucignat, et al., Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors, Cancer Res. 60(2000) 2800-2804;
(d) K.Müller, Pharmaceutically relevant metabolites fromlichens, Appl. Microbiol. Biotechnol. 56(2001) 9-16;
(e) H.S. Huang, J.M. Hwang, Y.M. Jen, et al., Studies on anthracenes. 1. Human telomerase inhibition and lipid peroxidation of 9-acyloxy 1,5-dichloroanthracene derivatives, Chem. Pharm. Bull. 49(2001) 969-973;
(f) H. Prinz, Y. Ishii, T. Hirano, et al., Novel benzylidene-9(10H)-anthracenones as highly active antimicrotubule agents. Synthesis, antiproliferative activity, and inhibition of tubulin polymerization, J. Med. Chem. 46(2003) 3382-3394;
(g) E. Hoffman, Cancer and the Search for Selective Biochemical Inhibitors, 2nd ed., CRC, Boca Raton, 2007;
(h) A. Zuse, D. Schmidt, S. Baasner, et al., Sulfonate derivatives of naphtho[2,3-b]thiophen-4(9H)-one and 9(10H)-anthracenone as highly active antimicrotubule agents. Synthesis, antiproliferative activity, and inhibition of tubulin polymerization, J. Med. Chem. 50(2007) 6059-6066.
For selected examples of asymmetric Diels-Alder reactions of anthrones, see:(a) O Riant, H.B. Kagan, L. Ricard, Asymmetric base-catalyzed cycloaddition between anthrone and some dienophiles, Tetrahedron 50(1994) 4543-4554;
(b) K. Tokioka, S. Masuda, T. Fujii, Y. Hata, Y. Yamamoto, Asymmetric cycloaddition of anthrone with N-substituted maleimides with C2-chiral pyrrolidines, Tetrahedron:Asymmetry 8(1997) 101-107;
(c) B. Peng, K. Cheng, D. Ma, Chiral guanidine catalyzed Michael addition reaction and Diels-Alder reaction of anthrone and N-methylmaleimide, Chin. J. Chem. 18(2000) 411-413;(d) K. Uemae, S. Masuda, Y. Yamamoto, Asymmetric cycloaddition of anthrone and maleimides catalyzed by C2-chiral pyrrolidines, J. Chem. Soc. Perkin Trans. 1(2001) 1002-1006;
(e) R. Harrison, B. Rickborn, Synergistic catalysis of anthrone Diels-Alder reactions, Org. Lett. 4(2002) 1711-1713;
(f) J. Shen, T.T. Nguyen, Y.P. Goh, et al., Chiral bicyclic guanidine-catalyzed enantioselective reactions of anthrones, J. Am. Chem. Soc. 128(2006) 13692-13693;
(g) D. Akalay,G.Dürner,M.W.Göbel,Afirst case of asymmetric catalysis induced by metal-free bisoxazolines, Eur. J. Org. Chem. (2008) 2365-2368;
(h) D. Akalay, G. Dürner, J.W. Bats, M.W. Göbel, C2-symmetric bisamidines:chiral Brønsted bases catalysing the Diels-Alder reaction of anthrones, Beilstein J. Org. Chem. 4(2008) 28;
(i) A. Zea, G. Valero, A.N. Alba, A. Moyano, R. Rios, Bifunctional thiourea-catalyzed asymmetric addition of anthrones to maleimides, Adv. Synth. Catal. 352(2010) 1102-1106;
(j) J.F. Bai, Y.L. Guo, L. Peng, et al., Enantioselective Diels-Alder reaction of anthrone and maleimide catalyzed by a simple chiral tertiary amine, Tetrahedron 69(2013) 1229-1233.
(a) A.N. Alba, N. Bravo, A. Moyano, R. Rios, Enantioselective addition of anthrones to α,β-unsaturated aldehydes, Tetrahedron Lett. 50(2009) 3067-3069;
(b) C. Wu, W. Li, J. Yang, X. Liang, J. Ye, Asymmetric organocatalytic Michael addition of anthrone to enone, Org. Biomol. Chem. 8(2010) 3244-3250.
(a) M. Shi, Z.Y. Lei, M.X. Zhao, J.W. Shi, A highly efficient asymmetric Michael addition of anthrone to nitroalkenes with cinchona organocatalysts, Tetrahedron Lett. 48(2007) 5743-5746;
(b) Y.H. Liao, H. Zhang, Z.J. Wu, et al., Enantioselective Michael addition of anthrone to nitroalkenes catalyzed by bifunctional thiourea-tertiary amines, Tetrahedron:Asymmetry 20(2009) 2397-2402;
(c) T. He, X.Y. Wu, Enantioselective organocatalytic Michael addition of anthrone to nitroalkenes, Chin. J. Org. Chem. 9(2010) 1400-1404;
(d) A. Zea, A.N. Alba, N. Bravo, A. Moyano, R. Rios, Asymmetric organocatalytic anthrone additions to activated alkenes, Tetrahedron 67(2011) 2513-2529;
(e) H.W. Sun, Y.H. Liao, Z.J. Wu, et al., Enantioselective 1,6-Michael addition of anthrone to 3-methyl-4-nitro-5-alkenyl-isoxazoles catalyzed by bifunctional thiourea-tertiary amines, Tetrahedron 67(2011) 3991-3996.
(a) M. Koerner, B. Rickborn, Anthrones as reactive dienes in Diels-Alder reactions, J. Org. Chem. 54(1989) 6-9;
(b) H.G. Korth, P. Mulder, Anthrone and related hydroxyarenes:tautomerization and hydrogen bonding, J. Org. Chem. 78(2013) 7674-7682.
For recent reviews on Ir-catalyzed allylic substitution reactions, see (a) H Miyabe, Y. Takemoto, Regio- and stereocontrolled palladium-or iridiumcatalyzed allylation, Synlett (2005) 1641-1655;
(b) R. Takeuchi, S. Kezuka, Iridium-catalyzed formation of carbon-carbon and carbon-heteroatom bonds synthesis, 2006, 3349-3366;
(c) G. Helmchen, A. Dahnz, P. Dübon, M. Schelwies, R. Weihofen, Iridium-catalysed asymmetric allylic substitutions, Chem. Commun. (2007) 675-691;
(d) M. Stanley, J.F. Hartwig, Mechanistically driven development of iridium catalysts for asymmetric allylic substitution, Acc. Chem. Res. 43(2010) 1461-1475;
(e) Z. Zhang, F. Xie, B. Yang, H. Yu,W. Zhang, Chiral phosphoramidite ligand and its application in asymmetric catalysis, Chin. J. Org. Chem. 31(2011) 429-442;
(f) W.B. Liu, J.B. Xia, S.L. You, Iridium-catalyzed asymmetric allylic substitutions, Top. Organomet. Chem. 38(2012) 155-208;
(g) P. Tosatti, A. Nelson, S.P. Marsden, Recent advances and applications of iridiumcatalysed asymmetric allylic substitution,Org. Biomol. Chem. 10(2012) 3147-3163;
(h) C.X. Zhuo, C. Zheng, S.L. You, Transition-metal-catalyzed asymmetric allylic dearomatization reactions, Acc. Chem. Res. 47(2014) 2558-2573.
For selected recent examples, see:(a) HHe, W.B. Liu, L.X. Dai, S.L. You, Enantioselective synthesis of 2,3-dihydro-1Hbenzo[b]azepines:iridium-catalyzed tandem allylic vinylation/amination reaction, Angew. Chem. Int. Ed. 49(2010) 1496-1499;
(b) S. Zheng, N. Gao, W. Liu, et al., Regio- and enantioselective iridium-catalyzed allylation of thiophenol:synthesis of enantiopure allyl phenyl sulfides, Org. Lett. 12(2010) 4454-4457;
(c) Q.F.Wu,W.B. Liu, C.X. Zhuo, et al., Iridium-catalyzed intramolecular asymmetric allylic dearomatization of phenols, Angew. Chem. Int. Ed. 50(2011) 4455-4458;
(d) Q.F. Wu, C. Zheng, S.L. You, Enantioselective synthesis of spiro cyclopentane-1,3'-indoles and 2,3,4,9-tetrahydro-1H-carbazoles by iridium-catalyzed allylic dearomatization and stereospecific migration, Angew. Chem. Int. Ed. 51(2012) 1680-1683;
(e) W.B. Liu, C.M. Reeves, S.C. Virgil, B.M. Stoltz, Construction of vicinal tertiary and all-carbon quaternary stereocenters via Ir-catalyzed regio-, diastereo-, and enantioselective allylic alkylation and applications in sequential Pd catalysis, J. Am. Chem. Soc. 135(2013) 10626-10629;
(f) W.B. Liu, C.M. Reeves, B.M. Stoltz, Enantio-, diastereo-, and regioselective iridium-catalyzed asymmetric allylic alkylation of acyclic β-ketoesters, J. Am. Chem. Soc. 135(2013) 17298-17301;
(g) M. Chen, J.F. Hartwig, Iridium-catalyzed enantioselective allylic substitution of unstabilized enolates derived from α,β-unsaturated ketones, Angew. Chem. Int. Ed. 53(2014) 8691-8695;
(h) W. Chen, J.F. Hartwig, Cation control of diastereoselectivity in iridiumcatalyzed allylic substitutions. Formation of enantioenriched tertiary alcohols and thioethers by allylation of 5H-oxazol-4-ones and 5H-thiazol-4-ones, J. Am. Chem. Soc. 136(2014) 377-382;
(i) J.Qu, L. Roßberg, G. Helmchen, Enantio- and regioselective iridium-catalyzed allylic esterification, J. Am. Chem. Soc. 136(2014) 1272-1275;
(j) S. Krautwald, M.A. Schafroth, D. Sarlah, E.M. Carreira, Stereodivergent α-allylation of linear aldehydes with dual iridium and amine catalysis, J. Am. Chem. Soc. 136(2014) 3020-3023;
(k) Z.P. Yang, Q.F.Wu, S.L. You, Direct asymmetric dearomatization of pyridines and pyrazines by iridium-catalyzed allylic amination reactions, Angew. Chem. Int. Ed. 53(2014) 6986-6989;
(l) J.Y. Hamilton, D. Sarlah, E.M. Carreira, Iridium-catalyzed enantioselective allylic alkylation with functionalized organozinc bromides, Angew. Chem. Int. Ed. 54(2015) 7644-7647;
(m) X. Zhang, Z.P. Yang, L. Huang, S.L. You, Highly regio- and enantioselective synthesis of N-substituted 2-pyridones:iridium-catalyzed intermolecular asymmetric allylic amination, Angew. Chem. Int. Ed. 54(2015) 1873-1876;
(n) S. Breitler, E.M. Carreira, Formaldehyde N,N-dialkylhydrazones as neutral formyl anion equivalents in iridium-catalyzed asymmetric allylic substitution, J. Am. Chem. Soc. 137(2015) 5296-5299;
(o) C.X. Zhuo, Y. Zhou, Q. Cheng, L. Huang, S.L. You, Enantioselective construction of spiroindolines with three contiguous stereogenic centers and chiral tryptamine derivatives via reactive spiroindolenine intermediates, Angew. Chem. Int. Ed. 54(2015) 14146-14149;
(p) Z.P. Yang, Q.F. Wu, W. Shao, S.L. You, Iridium-catalyzed intramolecular asymmetric allylic dearomatization reaction of pyridines, pyrazines, quinolines, and isoquinolines, J. Am. Chem. Soc. 137(2015) 15899-15906.
Kiener T.C., Shu C., Incarvito C.D., Hartwig J.F.. Identification of an activated catalyst in the iridium-catalyzed allylic amination and etherification. Increased rates, scope, and selectivity[J]. J. Am. Chem. Soc, 2003,125:14272-14273.
(a) W.B. Liu, H. He, L.X. Dai, S.L. You, Synthesis of 2-methylindoline- and 2-methyl-1,2,3,4-tetrahydroquinoline-derived phosphoramidites and their applications in iridium-catalyzed allylic alkylation of indoles, Synthesis (2009) 2076-2082;
(b) Q.F. Wu, H. He, W.B. Liu, S.L. You, Enantioselective construction of spiroindolenines by Ir-catalyzed allylic alkylation reactions, J. Am. Chem. Soc. 132(2010) 11418-11419;
(c) J.B. Xia, C.X. Zhuo, S.L. You, Synthesis of cyclopropane-containing building blocks via Ir-catalyzed enantioselective allylic substitution reaction, Chin. J. Chem. 28(2010) 1525-1528;
(d) C.X. Zhuo, W.B. Liu, Q.F. Wu, S.L. You, Asymmetric dearomatization of pyrroles via Ir-catalyzed allylic substitution reaction:enantioselective synthesis of spiro-2H-pyrroles, Chem. Sci. 3(2012) 205-208;
(e) W.B. Liu, C. Zheng, C.X. Zhuo, L.X. Dai, S.L. You, Iridium-catalyzed allylic alkylation reaction with N-aryl phosphoramidite ligands:scope and mechanistic studies, J. Am. Chem. Soc. 134(2012) 4812-4821;
(f) C.X. Zhuo, Q.F.Wu, Q. Zhao, Q.L. Xu, S.L. You, Enantioselective functionalization of indoles and pyrroles via an in situ-formed spiro intermediate, J. Am. Chem. Soc. 135(2013) 8169-8172;
(g) Q.L. Xu, C.X. Zhuo, L.X. Dai, S.L. You, Highly enantioselective synthesis of tetrahydrocarbolines via iridium-catalyzed intramolecular Friedel-Crafts type allylic alkylation reactions, Org. Lett. 15(2013) 5909-5911;
(h) X. Zhang, W.B. Liu, H.F. Tu, S.L. You, Ligand-enabled Ir-catalyzed intermolecular diastereoselective and enantioselective allylic alkylation of 3-substituted indoles, Chem. Sci. 6(2015) 4525-4529;
(i) C.X. Zhuo, Q. Cheng,W.B. Liu, Q. Zhao, S.L. You, Enantioselective synthesis of pyrrole-based spiro- and polycyclic derivatives by iridium-catalyzed asymmetric allylic dearomatization and controllable migration reactions, Angew. Chem. Int. Ed. 54(2015) 8475-8479;
(j) Z.L. Zhao, Q. Gu, X.Y. Wu, S.L. You, Pd(0)-catalyzed benzylation of indole through η3-benzyl palladium intermediate, Chin. J. Catal. 36(2015) 15-18;
(k) Z.L. Zhao, Q.L. Xu, Q. Gu, X.Y. Wu, S.L. You, Enantioselective synthesis of 4-substituted tetrahydroisoquinolines via palladium-catalyzed intramolecular Friedel-Crafts type allylic alkylation of phenols, Org. Biomol. Chem. 13(2015) 3086-3092.
Morrill T.C., D'Souza C.A., Yang L., Sampognaro A.J.. Transition-metal-promoted hydroboration of alkenes:a unique reversal of regioselectivity[J]. J. Org. Chem, 2002,67:2481-2484.
Xiaohui Fu , Yanping Zhang , Juan Liao , Zhen-Hua Wang , Yong You , Jian-Qiang Zhao , Mingqiang Zhou , Wei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688
Zhirong Yang , Shan Wang , Ming Jiang , Gengchen Li , Long Li , Fangzhi Peng , Zhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518
Yiming Yang , Lichao Sun , Qingfeng Zhang . Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry, 2025, 44(1): 100467-100467. doi: 10.1016/j.cjsc.2024.100467
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
Jiajun Lu , Zhehui Liao , Tongxiang Cao , Shifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842
Yan-Bo Li , Yi Li , Liang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294
Xingfen Huang , Jiefeng Zhu , Chuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783
Yuemin Chen , Yunqi Wu , Guoao Wang , Feihu Cui , Haitao Tang , Yingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445
Tingyu Zhu , Hui Zhang , Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
Jinyu Guo , Yandai Lin , Shaohua He , Yueqing Chen , Fenglu Li , Renjie Ruan , Gaoxing Pan , Hexin Nan , Jibin Song , Jin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537
Chun-Yun Ding , Ru-Yuan Zhang , Yu-Wu Zhong , Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393
Fuzheng Zhang , Chao Shi , Jiale Li , Fulin Jia , Xinyu Liu , Feiyang Li , Xinyu Bai , Qiuxia Li , Aihua Yuan , Guohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Xiao-Tong Sun , Hao-Fei Ni , Yi Zhang , Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212
Long Jin , Jian Han , Dongmei Fang , Min Wang , Jian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443