Citation: Zhao Zheng-Le, Gu Qing, Wu Xin-Yan, You Shu-Li. Enantioselective synthesis of 10-allylanthrones via iridium-catalyzed allylic substitution reaction[J]. Chinese Chemical Letters, ;2016, 27(5): 619-622. doi: 10.1016/j.cclet.2016.02.017 shu

Enantioselective synthesis of 10-allylanthrones via iridium-catalyzed allylic substitution reaction

  • Corresponding author: Wu Xin-Yan, xinyanwu@ecust.edu.cn You Shu-Li, slyou@sioc.ac.cn
  • Received Date: 26 January 2016
    Revised Date: 18 February 2016
    Accepted Date: 19 February 2016
    Available Online: 2 May 2016

Figures(2)

  • A highly enantioselective allylic substitution reaction of anthrones with aromatic or aliphatic allyl carbonates was realized by using iridium catalyst prepared from [Ir(COD)Cl]2 and BHPphos. Substituted 10-allylanthrones were obtained in excellent yields and with excellent enantioselectivity and regioselectivity (up to 98% yield, 99% ee) under mild conditions.
  • 加载中
    1. [1]

      S. Coffey, Rodd's Chemistry of Carbon Compounds, vol. Ⅲ, Part H, Elsevier, New York, 1979.

    2. [2]

      (a) D.W. Cameron, C.E. Skene, Synthesis of the androgen-receptor antagonists (±)-Ws9761 A and B, Aust. J. Chem. 49(1996) 617-624;
      (b) K. Müller, H. Prinz, Antipsoriatic anthrones with modulated redox properties. 4. Synthesis and biological activity of novel 9,10-dihydro-1,8-dihydroxy-9-oxo-2-anthracenecarboxylic and-hydroxamic acids, J. Med. Chem. 40(1997) 2780-2787;
      (c) T. Pecere, M.V. Gazzola, C. Mucignat, et al., Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors, Cancer Res. 60(2000) 2800-2804;
      (d) K.Müller, Pharmaceutically relevant metabolites fromlichens, Appl. Microbiol. Biotechnol. 56(2001) 9-16;
      (e) H.S. Huang, J.M. Hwang, Y.M. Jen, et al., Studies on anthracenes. 1. Human telomerase inhibition and lipid peroxidation of 9-acyloxy 1,5-dichloroanthracene derivatives, Chem. Pharm. Bull. 49(2001) 969-973;
      (f) H. Prinz, Y. Ishii, T. Hirano, et al., Novel benzylidene-9(10H)-anthracenones as highly active antimicrotubule agents. Synthesis, antiproliferative activity, and inhibition of tubulin polymerization, J. Med. Chem. 46(2003) 3382-3394;
      (g) E. Hoffman, Cancer and the Search for Selective Biochemical Inhibitors, 2nd ed., CRC, Boca Raton, 2007;
      (h) A. Zuse, D. Schmidt, S. Baasner, et al., Sulfonate derivatives of naphtho[2,3-b]thiophen-4(9H)-one and 9(10H)-anthracenone as highly active antimicrotubule agents. Synthesis, antiproliferative activity, and inhibition of tubulin polymerization, J. Med. Chem. 50(2007) 6059-6066.

    3. [3]

      For selected examples of asymmetric Diels-Alder reactions of anthrones, see:(a) O Riant, H.B. Kagan, L. Ricard, Asymmetric base-catalyzed cycloaddition between anthrone and some dienophiles, Tetrahedron 50(1994) 4543-4554;
      (b) K. Tokioka, S. Masuda, T. Fujii, Y. Hata, Y. Yamamoto, Asymmetric cycloaddition of anthrone with N-substituted maleimides with C2-chiral pyrrolidines, Tetrahedron:Asymmetry 8(1997) 101-107;
      (c) B. Peng, K. Cheng, D. Ma, Chiral guanidine catalyzed Michael addition reaction and Diels-Alder reaction of anthrone and N-methylmaleimide, Chin. J. Chem. 18(2000) 411-413;(d) K. Uemae, S. Masuda, Y. Yamamoto, Asymmetric cycloaddition of anthrone and maleimides catalyzed by C2-chiral pyrrolidines, J. Chem. Soc. Perkin Trans. 1(2001) 1002-1006;
      (e) R. Harrison, B. Rickborn, Synergistic catalysis of anthrone Diels-Alder reactions, Org. Lett. 4(2002) 1711-1713;
      (f) J. Shen, T.T. Nguyen, Y.P. Goh, et al., Chiral bicyclic guanidine-catalyzed enantioselective reactions of anthrones, J. Am. Chem. Soc. 128(2006) 13692-13693;
      (g) D. Akalay,G.Dürner,M.W.Göbel,Afirst case of asymmetric catalysis induced by metal-free bisoxazolines, Eur. J. Org. Chem. (2008) 2365-2368;
      (h) D. Akalay, G. Dürner, J.W. Bats, M.W. Göbel, C2-symmetric bisamidines:chiral Brønsted bases catalysing the Diels-Alder reaction of anthrones, Beilstein J. Org. Chem. 4(2008) 28;
      (i) A. Zea, G. Valero, A.N. Alba, A. Moyano, R. Rios, Bifunctional thiourea-catalyzed asymmetric addition of anthrones to maleimides, Adv. Synth. Catal. 352(2010) 1102-1106;
      (j) J.F. Bai, Y.L. Guo, L. Peng, et al., Enantioselective Diels-Alder reaction of anthrone and maleimide catalyzed by a simple chiral tertiary amine, Tetrahedron 69(2013) 1229-1233.

    4. [4]

      (a) A.N. Alba, N. Bravo, A. Moyano, R. Rios, Enantioselective addition of anthrones to α,β-unsaturated aldehydes, Tetrahedron Lett. 50(2009) 3067-3069;
      (b) C. Wu, W. Li, J. Yang, X. Liang, J. Ye, Asymmetric organocatalytic Michael addition of anthrone to enone, Org. Biomol. Chem. 8(2010) 3244-3250.

    5. [5]

      (a) M. Shi, Z.Y. Lei, M.X. Zhao, J.W. Shi, A highly efficient asymmetric Michael addition of anthrone to nitroalkenes with cinchona organocatalysts, Tetrahedron Lett. 48(2007) 5743-5746;
      (b) Y.H. Liao, H. Zhang, Z.J. Wu, et al., Enantioselective Michael addition of anthrone to nitroalkenes catalyzed by bifunctional thiourea-tertiary amines, Tetrahedron:Asymmetry 20(2009) 2397-2402;
      (c) T. He, X.Y. Wu, Enantioselective organocatalytic Michael addition of anthrone to nitroalkenes, Chin. J. Org. Chem. 9(2010) 1400-1404;
      (d) A. Zea, A.N. Alba, N. Bravo, A. Moyano, R. Rios, Asymmetric organocatalytic anthrone additions to activated alkenes, Tetrahedron 67(2011) 2513-2529;
      (e) H.W. Sun, Y.H. Liao, Z.J. Wu, et al., Enantioselective 1,6-Michael addition of anthrone to 3-methyl-4-nitro-5-alkenyl-isoxazoles catalyzed by bifunctional thiourea-tertiary amines, Tetrahedron 67(2011) 3991-3996.

    6. [6]

      (a) M. Koerner, B. Rickborn, Anthrones as reactive dienes in Diels-Alder reactions, J. Org. Chem. 54(1989) 6-9;
      (b) H.G. Korth, P. Mulder, Anthrone and related hydroxyarenes:tautomerization and hydrogen bonding, J. Org. Chem. 78(2013) 7674-7682.

    7. [7]

      For recent reviews on Ir-catalyzed allylic substitution reactions, see (a) H Miyabe, Y. Takemoto, Regio- and stereocontrolled palladium-or iridiumcatalyzed allylation, Synlett (2005) 1641-1655;
      (b) R. Takeuchi, S. Kezuka, Iridium-catalyzed formation of carbon-carbon and carbon-heteroatom bonds synthesis, 2006, 3349-3366;
      (c) G. Helmchen, A. Dahnz, P. Dübon, M. Schelwies, R. Weihofen, Iridium-catalysed asymmetric allylic substitutions, Chem. Commun. (2007) 675-691;
      (d) M. Stanley, J.F. Hartwig, Mechanistically driven development of iridium catalysts for asymmetric allylic substitution, Acc. Chem. Res. 43(2010) 1461-1475;
      (e) Z. Zhang, F. Xie, B. Yang, H. Yu,W. Zhang, Chiral phosphoramidite ligand and its application in asymmetric catalysis, Chin. J. Org. Chem. 31(2011) 429-442;
      (f) W.B. Liu, J.B. Xia, S.L. You, Iridium-catalyzed asymmetric allylic substitutions, Top. Organomet. Chem. 38(2012) 155-208;
      (g) P. Tosatti, A. Nelson, S.P. Marsden, Recent advances and applications of iridiumcatalysed asymmetric allylic substitution,Org. Biomol. Chem. 10(2012) 3147-3163;
      (h) C.X. Zhuo, C. Zheng, S.L. You, Transition-metal-catalyzed asymmetric allylic dearomatization reactions, Acc. Chem. Res. 47(2014) 2558-2573.

    8. [8]

      For selected recent examples, see:(a) HHe, W.B. Liu, L.X. Dai, S.L. You, Enantioselective synthesis of 2,3-dihydro-1Hbenzo[b]azepines:iridium-catalyzed tandem allylic vinylation/amination reaction, Angew. Chem. Int. Ed. 49(2010) 1496-1499;
      (b) S. Zheng, N. Gao, W. Liu, et al., Regio- and enantioselective iridium-catalyzed allylation of thiophenol:synthesis of enantiopure allyl phenyl sulfides, Org. Lett. 12(2010) 4454-4457;
      (c) Q.F.Wu,W.B. Liu, C.X. Zhuo, et al., Iridium-catalyzed intramolecular asymmetric allylic dearomatization of phenols, Angew. Chem. Int. Ed. 50(2011) 4455-4458;
      (d) Q.F. Wu, C. Zheng, S.L. You, Enantioselective synthesis of spiro cyclopentane-1,3'-indoles and 2,3,4,9-tetrahydro-1H-carbazoles by iridium-catalyzed allylic dearomatization and stereospecific migration, Angew. Chem. Int. Ed. 51(2012) 1680-1683;
      (e) W.B. Liu, C.M. Reeves, S.C. Virgil, B.M. Stoltz, Construction of vicinal tertiary and all-carbon quaternary stereocenters via Ir-catalyzed regio-, diastereo-, and enantioselective allylic alkylation and applications in sequential Pd catalysis, J. Am. Chem. Soc. 135(2013) 10626-10629;
      (f) W.B. Liu, C.M. Reeves, B.M. Stoltz, Enantio-, diastereo-, and regioselective iridium-catalyzed asymmetric allylic alkylation of acyclic β-ketoesters, J. Am. Chem. Soc. 135(2013) 17298-17301;
      (g) M. Chen, J.F. Hartwig, Iridium-catalyzed enantioselective allylic substitution of unstabilized enolates derived from α,β-unsaturated ketones, Angew. Chem. Int. Ed. 53(2014) 8691-8695;
      (h) W. Chen, J.F. Hartwig, Cation control of diastereoselectivity in iridiumcatalyzed allylic substitutions. Formation of enantioenriched tertiary alcohols and thioethers by allylation of 5H-oxazol-4-ones and 5H-thiazol-4-ones, J. Am. Chem. Soc. 136(2014) 377-382;
      (i) J.Qu, L. Roßberg, G. Helmchen, Enantio- and regioselective iridium-catalyzed allylic esterification, J. Am. Chem. Soc. 136(2014) 1272-1275;
      (j) S. Krautwald, M.A. Schafroth, D. Sarlah, E.M. Carreira, Stereodivergent α-allylation of linear aldehydes with dual iridium and amine catalysis, J. Am. Chem. Soc. 136(2014) 3020-3023;
      (k) Z.P. Yang, Q.F.Wu, S.L. You, Direct asymmetric dearomatization of pyridines and pyrazines by iridium-catalyzed allylic amination reactions, Angew. Chem. Int. Ed. 53(2014) 6986-6989;
      (l) J.Y. Hamilton, D. Sarlah, E.M. Carreira, Iridium-catalyzed enantioselective allylic alkylation with functionalized organozinc bromides, Angew. Chem. Int. Ed. 54(2015) 7644-7647;
      (m) X. Zhang, Z.P. Yang, L. Huang, S.L. You, Highly regio- and enantioselective synthesis of N-substituted 2-pyridones:iridium-catalyzed intermolecular asymmetric allylic amination, Angew. Chem. Int. Ed. 54(2015) 1873-1876;
      (n) S. Breitler, E.M. Carreira, Formaldehyde N,N-dialkylhydrazones as neutral formyl anion equivalents in iridium-catalyzed asymmetric allylic substitution, J. Am. Chem. Soc. 137(2015) 5296-5299;
      (o) C.X. Zhuo, Y. Zhou, Q. Cheng, L. Huang, S.L. You, Enantioselective construction of spiroindolines with three contiguous stereogenic centers and chiral tryptamine derivatives via reactive spiroindolenine intermediates, Angew. Chem. Int. Ed. 54(2015) 14146-14149;
      (p) Z.P. Yang, Q.F. Wu, W. Shao, S.L. You, Iridium-catalyzed intramolecular asymmetric allylic dearomatization reaction of pyridines, pyrazines, quinolines, and isoquinolines, J. Am. Chem. Soc. 137(2015) 15899-15906.

    9. [9]

      Kiener T.C., Shu C., Incarvito C.D., Hartwig J.F.. Identification of an activated catalyst in the iridium-catalyzed allylic amination and etherification. Increased rates, scope, and selectivity[J]. J. Am. Chem. Soc, 2003,125:14272-14273.

    10. [10]

      (a) W.B. Liu, H. He, L.X. Dai, S.L. You, Synthesis of 2-methylindoline- and 2-methyl-1,2,3,4-tetrahydroquinoline-derived phosphoramidites and their applications in iridium-catalyzed allylic alkylation of indoles, Synthesis (2009) 2076-2082;
      (b) Q.F. Wu, H. He, W.B. Liu, S.L. You, Enantioselective construction of spiroindolenines by Ir-catalyzed allylic alkylation reactions, J. Am. Chem. Soc. 132(2010) 11418-11419;
      (c) J.B. Xia, C.X. Zhuo, S.L. You, Synthesis of cyclopropane-containing building blocks via Ir-catalyzed enantioselective allylic substitution reaction, Chin. J. Chem. 28(2010) 1525-1528;
      (d) C.X. Zhuo, W.B. Liu, Q.F. Wu, S.L. You, Asymmetric dearomatization of pyrroles via Ir-catalyzed allylic substitution reaction:enantioselective synthesis of spiro-2H-pyrroles, Chem. Sci. 3(2012) 205-208;
      (e) W.B. Liu, C. Zheng, C.X. Zhuo, L.X. Dai, S.L. You, Iridium-catalyzed allylic alkylation reaction with N-aryl phosphoramidite ligands:scope and mechanistic studies, J. Am. Chem. Soc. 134(2012) 4812-4821;
      (f) C.X. Zhuo, Q.F.Wu, Q. Zhao, Q.L. Xu, S.L. You, Enantioselective functionalization of indoles and pyrroles via an in situ-formed spiro intermediate, J. Am. Chem. Soc. 135(2013) 8169-8172;
      (g) Q.L. Xu, C.X. Zhuo, L.X. Dai, S.L. You, Highly enantioselective synthesis of tetrahydrocarbolines via iridium-catalyzed intramolecular Friedel-Crafts type allylic alkylation reactions, Org. Lett. 15(2013) 5909-5911;
      (h) X. Zhang, W.B. Liu, H.F. Tu, S.L. You, Ligand-enabled Ir-catalyzed intermolecular diastereoselective and enantioselective allylic alkylation of 3-substituted indoles, Chem. Sci. 6(2015) 4525-4529;
      (i) C.X. Zhuo, Q. Cheng,W.B. Liu, Q. Zhao, S.L. You, Enantioselective synthesis of pyrrole-based spiro- and polycyclic derivatives by iridium-catalyzed asymmetric allylic dearomatization and controllable migration reactions, Angew. Chem. Int. Ed. 54(2015) 8475-8479;
      (j) Z.L. Zhao, Q. Gu, X.Y. Wu, S.L. You, Pd(0)-catalyzed benzylation of indole through η3-benzyl palladium intermediate, Chin. J. Catal. 36(2015) 15-18;
      (k) Z.L. Zhao, Q.L. Xu, Q. Gu, X.Y. Wu, S.L. You, Enantioselective synthesis of 4-substituted tetrahydroisoquinolines via palladium-catalyzed intramolecular Friedel-Crafts type allylic alkylation of phenols, Org. Biomol. Chem. 13(2015) 3086-3092.

    11. [11]

      Morrill T.C., D'Souza C.A., Yang L., Sampognaro A.J.. Transition-metal-promoted hydroboration of alkenes:a unique reversal of regioselectivity[J]. J. Org. Chem, 2002,67:2481-2484.

  • 加载中
    1. [1]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    2. [2]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    3. [3]

      Yiming Yang Lichao Sun Qingfeng Zhang . Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry, 2025, 44(1): 100467-100467. doi: 10.1016/j.cjsc.2024.100467

    4. [4]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    5. [5]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    6. [6]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    7. [7]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    8. [8]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    9. [9]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    10. [10]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    11. [11]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    12. [12]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    13. [13]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    14. [14]

      Fuzheng ZhangChao ShiJiale LiFulin JiaXinyu LiuFeiyang LiXinyu BaiQiuxia LiAihua YuanGuohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596

    15. [15]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    16. [16]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    17. [17]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

    18. [18]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    19. [19]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    20. [20]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

Metrics
  • PDF Downloads(3)
  • Abstract views(646)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return