Synthesis and pharmacological properties of naturally occurring prenylated and pyranochalcones as potent anti-inflammatory agents
- Corresponding author: Jun Jong-Gab, jgjun@hallym.ac.kr
Citation: Damodar Kongara, Kim Jin-Kyung, Jun Jong-Gab. Synthesis and pharmacological properties of naturally occurring prenylated and pyranochalcones as potent anti-inflammatory agents[J]. Chinese Chemical Letters, ;2016, 27(5): 698-702. doi: 10.1016/j.cclet.2016.01.043
Quintans J.. Immunity and inflammation:the cosmic view[J]. Immunol. Cell Biol., 1994,72:262-264.
Moncada S., Palmer R.M., Higgs E.A.. Nitric oxide:physiology, pathophysiology, and pharmacology[J]. Pharmacol. Rev., 1991,43:109-142.
Hinz B., Brune K.. Cyclooxygenase-2-10 years later[J]. J. Pharmacol. Exp. Ther., 2002,300:367-375.
Batovska D.I., Todorova I.T.. Trends in utilization of the pharmacological potential of chalcones[J]. Curr. Clin. Pharmcol., 2010,5:1-29.
(a) A.K. Singh, G. Saxena, R. Prasad, A. Kumar, Synthesis, characterization and calculated non-linear optical properties of two new chalcones, J. Mol. Struct. 1017(2012) 26-31; (b) E.D. D'silva, G.K. Podagatlapalli, S.V. Rao, et al., New, high efficiency nonlinear optical chalcone co-crystal and structure-property relationship, Cryst. Growth Des. 11(2011) 5362-5369.
Won S.J., Liu C.T., Tsao L.T.. Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents[J]. Eur. J. Med. Chem., 2005,40:103-112.
Stevens J.F., Miranda C.L., Frei B., Buhler D.R.. Inhibition of peroxynitrite-mediated LDL oxidation by prenylated flavonoids:the α,β-unsaturated keto functionality of 2'-hydroxychalcones as a novel antioxidant pharmacophore[J]. Chem. Res. Toxicol., 2003,16:1277-1286.
Mahapatra D.K., Bharti S.K., Asati V.. Anti-cancer chalcones:structural and molecular target perspectives[J]. Eur. J. Med. Chem., 2015,98:69-114.
Lunardi F., Guzela M., Rodrigues A.T.. Trypanocidal and leishmanicidal properties of substitution containing chalcones[J]. Antimicrob. Agents Chemother., 2003,47:1449-1451.
Ritter M., Martins R.M., Dias D., Pereira M.P.. Recent advances on the synthesis of chalcones with antimicrobial activities:a brief review[J]. Lett. Org. Chem., 2014,11:498-508.
Park J.Y., Jeong H.J., Kim Y.M.. Characteristic of alkylated chalcones from Angelica keiskei on influenza virus neuraminidase inhibition[J]. Bioorg. Med. Chem. Lett., 2011,21:5602-5604.
Nielsen S.F., Boesen T., Larsen M.. Antibacterial chalcones-bioisosteric replacement of the 4'-hydroxy group[J]. Bioorg. Med. Chem., 2004,12:3047-3054.
Hsieh C.T., Hsieh T.J., El-Shazly M.. Synthesis of chalcone derivatives as potential anti-diabetic agents[J]. Bioorg. Med. Chem. Lett., 2012,22:3912-3915.
Zhao L.M., Jin H.S., Sun L.P.. Synthesis and evaluation of antiplatelet activity of trihydroxychalcone derivatives[J]. Bioorg. Med. Chem. Lett., 2005,15:5027-5029.
Varinska L., van Wijhe M., Belleri M.. Anti-angiogenic activity of the flavonoid precursor 4-hydroxychalcone[J]. Eur. J. Pharmacol., 2012,691:125-133.
Shashidhara K.V., Avula S.R., Mishra V.. Identification of quinoline-chalcone hybrids as potential antiulcer agents[J]. Eur. J. Med. Chem., 2015,89:638-653.
Macaev F., Boldescu V., Pogrebnoi S., Duca G.. Chalcone scaffold based antimycobacterial agents[J]. Med. Chem., 2014,4:487-493.
Larsen M., Kromann H., Kharazmi A., Nielsen S.F.. Conformationally restricted anti-plasmodial chalcones[J]. Bioorg. Med. Chem. Lett., 2005,15:4858-4861.
(a) O. Nerya, R. Musa, S. Khatib, et al., Chalcones as potent tyrosinase inhibitors:the effect of hydroxyl positions and numbers, Phytochemistry 65(2004) 1389-1395; (b) S. Iwata, N. Nagata, A. Omae, et al., Inhibitory effect of chalcone derivativess on recombinant human aldose reductase, Biol. Pharm. Bull. 22(1999) 323-325.
(a) S.J. Kim, C.G. Kim, S.R. Yun, et al., Synthesis of licochalcone analogues with increased anti-inflammatory activity, Bioorg. Med. Chem. Lett. 24(2014) 181-185; (b) J.H. Jeon, M.R. Kim, J.G. Jun, Concise synthesis of licochalcone A through water-accelerated[3,3]-sigmatropic rearrangement of an aryl prenyl ether, Synthesis 43(2011) 370-376.
Fukai T., Nishizawa J., Nomura T.. Five isoprenoid-substituted flavonoids from Glycyrrhiza eurycarpa[J]. Phytochemistry, 1994,35:515-519.
Bhatt P., Dayal R.. Stipulin, a prenylated chalcone from Dalbergia stipulacea[J]. Phytochemistry, 1992,31:719-721.
Narender T., Tanvir S.K., Rao M.S.. Prenylated chalcones isolated from Crotalaria genus inhibits in vitro growth of the human malaria parasite Plasmodium falciparum[J]. Bioorg. Med. Chem. Lett., 2005,15:2453-2455.
Rao G.V.R., Rao P.S., Raju K.R.. A prenylated chalcone from Crotalaria medicaginea[J]. Phytochemistry, 1987,26:2866-2868.
Asada Y., Li W., Yoshikawa T.. Isoprenylated flavonoids from hairy root cultures of Glycyrrhiza glabra[J]. Phytochemistry, 1998,47:389-392.
Cui L., Thuong P.T., Lee H.S.. Four new chalcones from Erythrina abyssinica[J]. Planta Med., 2008,74:422-426.
Hano Y., Itoh N., Hanaoka A.. Paratocarpins A-E, five new isoprenoidsubstituted chalcones from Paratocarpus venenosa Zoll[J]. Heterocycles, 1995,41:191-198.
Pistelli L., Spera K., Flamini G.. Isoflavonoids and chalcones from Anthyllis hermanniae[J]. Phytochemistry, 1996,42:1455-1458.
Lawson M.A., Kaouadji M., Chulia A.J.. A single chalcone and additional rotenoids from Lonchocarpus nicou[J]. Tetrahedron Lett., 2010,51:6116-6119.
(a) G.V. Rao, B.N. Swamy, V. Chandregowda, G.C. Reddy, Synthesis of (±)-abyssinone I and related compounds:their anti-oxidant and cytotoxic activities, Eur. J. Med. Chem. 44(2009) 2239-2245; (b) A. Maiti, M. Cuendet, V.L. Croy, et al., Synthesis and biological evaluation of (±)-abyssinone Ⅱ and its analogues as aromatase inhibitors for chemoprevention of breast cancer, J. Med. Chem. 50(2007) 2799-2806.
(a) H.-M. Wang, L. Zhang, J. Liu, et al., Synthesis and anti-cancer activity evaluation of novel prenylated and geranylated chalcone natural products and their analogs, Eur. J. Med. Chem. 92(2015) 439-448; (b) N. Tadigoppula, V. Korthikunta, S. Gupta, et al., Synthesis and insight into the structure-activity relationships of chalcones as antimalarial agents, J. Med. Chem. 56(2013) 31-45.
Xiaoyao Ma , Jinling Zhang , Ge Fang , He Gao , Jie Gao , Li Fu , Yuanyuan Hou , Gang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823
Wenjia Wang , Xingyue He , Xiaojie Wang , Tiantian Zhao , Osamu Muraoka , Genzoh Tanabe , Weijia Xie , Tianjiao Zhou , Lei Xing , Qingri Jin , Hulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656
Xiongbo Song , Jinwen Xiao , Juan Wu , Li Sun , Long Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Hao Cai , Xiaoyan Wu , Lei Jiang , Feng Yu , Yuxiang Yang , Yan Li , Xian Zhang , Jian Liu , Zijian Li , Hong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946
Haiyang Gu , Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
Dong Cheng , Youyou Feng , Bingxi Feng , Ke Wang , Guoxin Song , Gen Wang , Xiaoli Cheng , Yonghui Deng , Jing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Long Li , Kang Yang , Chenpeng Xi , Mengchao Li , Borong Li , Gui Xu , Yuanbin Xiao , Xiancai Cui , Zhiliang Liu , Lingyun Li , Yan Yu , Chengkai Yang . Highly-chlorinated inert and robust interphase without mineralization of oxide enhancing high-rate Li metal batteries. Chinese Chemical Letters, 2024, 35(6): 108814-. doi: 10.1016/j.cclet.2023.108814
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
Qiang Wu , Baofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089
Jincheng Zhang , Mengjie Sun , Jiali Ren , Rui Zhang , Min Ma , Qingzhong Xue , Jian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491
Yang Li , Xiaoxu Liu , Tianyi Ji , Man Zhang , Xueru Yan , Mengjie Yao , Dawei Sheng , Shaodong Li , Peipei Ren , Zexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Feifei Wang , Hang Yao , Xinyue Wu , Yijian Tang , Yang Bai , Hui Chong , Huan Pang . Metal–organic framework and its composites modulate macrophage polarization in the treatment of inflammatory diseases. Chinese Chemical Letters, 2024, 35(5): 108821-. doi: 10.1016/j.cclet.2023.108821