Citation: Hao Lin, Liu Xing-Li, Wang Jun-Tao, Wang Chun, Wu Qiu-Hua, Wang Zhi. Metal-organic framework derived magnetic nanoporous carbon as an adsorbent for the magnetic solid-phase extraction of chlorophenols from mushroom sample[J]. Chinese Chemical Letters, ;2016, 27(5): 783-788. doi: 10.1016/j.cclet.2016.01.021 shu

Metal-organic framework derived magnetic nanoporous carbon as an adsorbent for the magnetic solid-phase extraction of chlorophenols from mushroom sample

  • Corresponding author: Wang Zhi, zhiwang2013@aliyun.com
  • Received Date: 25 July 2015
    Revised Date: 27 August 2015
    Accepted Date: 5 January 2016
    Available Online: 22 May 2016

Figures(8)

  • In this work, a metal-organic framework derived nanoporous carbon (MOF-5-C) was fabricated and modified with Fe3O4 magnetic nanoparticles. The resulting magnetic MOF-5-derived porous carbon (Fe3O4@MOF-5-C) was then used for the magnetic solid-phase extraction of chlorophenols (CPs) from mushroom samples prior to high performance liquid chromatography-ultraviolet detection. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and N2 adsorption were used to characterize the adsorbent. After experimental optimization, the amount of the adsorbent was chosen as 8.0 mg, extraction time as 10 min, sample volume as 50 mL, desorption solvent as 0.4 mL (0.2 mL×2) of alkaline methanol, and sample pH as 6. Under the above optimized conditions, good linearity for the analytes was obtained in the range of 0.8-100.0 ng g-1 with the correlation coefficients between 0.9923 and 0.9963. The limits of detection (S/N=3) were in the range of 0.25-0.30 ng g-1, and the relative standard deviations were below 6.8%. The result showed that the Fe3O4@MOF-5-C has an excellent adsorption capacity for the analytes.
  • 加载中
    1. [1]

      Hu Y.L., Huang Z.L., Liao J., Li G.K.. Chemical bonding approach for fabrication of hybrid magnetic metal-organic framework-5:high efficient adsorbents for magnetic enrichment of trace analytes[J]. Anal. Chem., 2013,85:6885-6893.

    2. [2]

      Li Q.W., Zhang W.Y., Miljanić O.Š.. Docking in metal-organic frameworks[J]. Science, 2009,325:855-859.

    3. [3]

      Zhou H.C., Long J.R., Yaghi O.M.. Introduction to metal-organic frameworks[J]. Chem. Rev., 2012,112:673-674.

    4. [4]

      Kaye S.S., Dailly A.D., Yaghi O.M., Long J.R.. Impact of preparation and handling on the hydrogen storage properties of Zn4O (1,4-benzenedicarboxylate)3(MOF-5)[J]. J. Am. Chem. Soc., 2007,129:14176-14177.

    5. [5]

      Kreno L.E., Leong K., Farha O.K.. Metal-organic framework materials as chemical sensors[J]. Chem. Rev., 2012,112:1105-1125.

    6. [6]

      Li J.R., Sculley J., Zhou H.C.. Metal-organic frameworks for separations[J]. Chem. Rev., 2012,112:869-932.

    7. [7]

      Liu B., Shioyama H., Jiang H.L., Zhang X.B., Xu Q.. Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor[J]. Carbon, 2010,48:456-463.

    8. [8]

      Jiang H.L., Liu B., Lan Y.Q.. From metal-organic framework to nanoporous carbon:toward a very high surface area and hydrogen uptake[J]. J. Am. Chem. Soc., 2011,133:11854-11857.

    9. [9]

      Hao L., Wang C., Wu Q.H.. Metal-organic framework derived magnetic nanoporous carbon:novel adsorbent for magnetic solid-phase extraction[J]. Anal. Chem., 2014,86:12199-12205.

    10. [10]

      Chen L., Bai J., Wang C.. One-step solid-state thermolysis of a metal-organic framework:a simple and facile route to large-scale of multiwalled carbon nanotubes[J]. Chem. Commun., 2008,44:1581-1583.

    11. [11]

      Hu M., Reboul J., Furukawa S.. Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon[J]. J. Am. Chem. Soc., 2012,134:2864-2867.

    12. [12]

      Chaikittisilp W., Ariga K., Yamauchi Y.. A new family of carbon materials:synthesis of MOF-derived nanoporous carbons and their promising applications[J]. J. Mater. Chem. A, 2013,1:14-19.

    13. [13]

      Sun J.K., Xu Q.. Functional materials derived from open framework templates/precursors:synthesis and applications[J]. Energy Environ. Sci., 2014,7:2071-2100.

    14. [14]

      Yang S.J., Kim T., Im J.H.. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity[J]. Chem. Mater., 2012,24:464-470.

    15. [15]

      Banerjee A., Gokhale R., Bhatnagar S.. MOF derived porous carbon-Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent[J]. J. Mater. Chem., 2012,22:19694-19699.

    16. [16]

      Li R., Yuan Y.P., Qiu L.G., Zhang W., Zhu J.F.. A rational self-sacrificing template route to metal-organic framework nanotubes and reversible vapor-phase detection of nitroaromatic explosives[J]. Small, 2012,8:225-230.

    17. [17]

      Li R., Ren X.Q., Feng X.. A highly stable metal- and nitrogen-doped nanocomposite derived from Zn/Ni-ZIF-8 capable of CO2 capture and separation[J]. Chem. Commun., 2014,50:6894-6897.

    18. [18]

      Kim J., McNamara N.D., Her T.H., Hicks J.C.. Carbothermal reduction of Ti-modified IRMOF-3:an adaptable synthetic method to support catalytic nanoparticles on carbon[J]. ACS Appl. Mater. Interfaces, 2013,5:11479-11487.

    19. [19]

      Liu J., Wang H., Wu C.. Preparation and characterization of nanoporous carbon-supported platinum as anode electrocatalyst for direct borohydride fuel cell[J]. Int. J. Hydrogen Energy, 2014,39:6729-6736.

    20. [20]

      Torad N.L., Hu M., Ishihara S.. Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment[J]. Small, 2014,10:2096-2107.

    21. [21]

      Li X.S., Zhu G.T., Luo Y.B., Yuan B.F., Feng Y.Q.. Synthesis and applications of functionalized magnetic materials in sample preparation[J]. TrAC Trends Anal. Chem., 2013,45:233-247.

    22. [22]

      Ríos A., Zougagh M., Bouri M.. Magnetic (nano)materials as an useful tool for sample preparation in analytical methods. A review[J]. Anal. Methods, 2013,5:4558-4573.

    23. [23]

      Wang C., Ma R.Y., Wu Q.H., Sun M., Wang Z.. Magnetic porous carbon as an adsorbent for the enrichment of chlorophenols from water and peach juice samples[J]. J. Chromatogr. A, 2014,1361:60-66.

    24. [24]

      Ghaffari A., Tehrani M.S., Husain S.W., Anbia M., Azar P.A.. Adsorption of chlorophenols from aqueous solution over amino-modified ordered nanoporous silica materials[J]. J. Nanostruct. Chem., 2014,4:114-123.

    25. [25]

      Sun M., Cui P.L., Ji S.J.. Octadecyl-modified graphene as an adsorbent for hollow fiber liquid phase microextraction of chlorophenols from honey[J]. Bull. Korean Chem. Soc., 2014,35:1011-1015.

    26. [26]

      Petit C., Bandosz T.J.. MOF-graphite oxide composites:combining the uniqueness of graphene layers and metal-organic frameworks[J]. Adv.Mater., 2009,21:4753-4757.

    27. [27]

      Wang L., Zang X.H., Wang C., Wang Z.. Graphene oxide as a micro-solid-phase extraction sorbent for the enrichment of parabens from water and vinegar samples[J]. J. Sep. Sci., 2014,37:1656-1662.

    28. [28]

      Liu J.F., Liang X., Chi Y.G.. High performance liquid chromatography determination of chlorophenols in water samples after preconcentration by continuous flow liquid membrane extraction on-line coupled with a precolumn[J]. Anal. Chim. Acta, 2003,487:129-135.

    29. [29]

      Cai Y.Q., Cai Y.E., Mou S.F., Lu Y.Q.. Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples[J]. J. Chromatogr. A, 2005,1081:245-247.

    30. [30]

      Wang J.T., Wang W.N., Wu Q.H., Wang C., Wang Z.. Extraction of some chlorophenols from environmental waters using a novel graphene-based magnetic nanocomposite followed by hplc determination[J]. J. Liq. Chromatogr. Relat. Technol., 2014,37:2349-2362.

    31. [31]

      Liu Q., Shi J.B., Zeng L.X.. Evaluation of graphene as an advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes[J]. J. Chromatogr. A, 2011,1218:197-204.

  • 加载中
    1. [1]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    2. [2]

      Qingyun Yang Yue Ma Quanyi Ye Yiqing Liu Yuhong Luo Yongbo Wu Zhiguang Xu Xiaoming Lin . Prussian blue analogues derived MO/MFe2O4 (M = Ni, Cu, Zn) nanoparticles as a high-performance anode material for enhanced lithium storage. Chinese Journal of Structural Chemistry, 2025, 44(8): 100631-100631. doi: 10.1016/j.cjsc.2025.100631

    3. [3]

      Xinyu WuJianfeng LuZihao ZhuSuijun LiuHerui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151

    4. [4]

      Pengfu Gao Yuan Geng Wei Gong . Homochiral metal-organic frameworks bearing privileged ligands for heterogeneous asymmetric catalysis. Chinese Journal of Structural Chemistry, 2025, 44(10): 100719-100719. doi: 10.1016/j.cjsc.2025.100719

    5. [5]

      Jun-Xian Chen Xian-Xian Xiao Libo Li Jinping Li Rui-Biao Lin Xiao-Ming Chen . Fine-tuning of Hofmann-type metal-organic frameworks for highly efficient separation of C4 olefins. Chinese Journal of Structural Chemistry, 2025, 44(12): 100744-100744. doi: 10.1016/j.cjsc.2025.100744

    6. [6]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    7. [7]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    8. [8]

      Shan-Qing YangLu-Lu WangRajamani KrishnaBo XingLei ZhouFei-Yang ZhangQiang ZhangYi-Long LiChao-Sheng BaoTong-Liang Hu . Efficient C3H6/C3H8 separation within a bifunctional ultramicroporous metal-organic framework with high purity and record packing density. Chinese Chemical Letters, 2025, 36(12): 110556-. doi: 10.1016/j.cclet.2024.110556

    9. [9]

      Zhiqi Hu Lingling Wu Duo Zhang Yixue An Jiao Wang Binbin Zhao Robert Chunhua Zhao Rong Cao Xue Yang . Ultrathin transparent metal-organic framework-based nanocomposite membranes for antibacterial wound healing. Chinese Journal of Structural Chemistry, 2025, 44(12): 100749-100749. doi: 10.1016/j.cjsc.2025.100749

    10. [10]

      Mengjin Li Tian Xia Mengyu Wang Yujie Peng Sihan Zhang Xueliang Jiang Huan Yang . Biocarbon-Confined Bimetallic FeCo Metal-Organic Framework Orthogonal Nanosheet Arrays for Industry-level Ethylene Glycol Oxidation. Chinese Journal of Structural Chemistry, 2025, 44(8): 100627-100627. doi: 10.1016/j.cjsc.2025.100627

    11. [11]

      Xi Feng Ding-Yi Hu Zi-Jun Liang Mu-Yang Zhou Zhi-Shuo Wang Wen-Yu Su Rui-Biao Lin Dong-Dong Zhou Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540

    12. [12]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    13. [13]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    14. [14]

      Chao Wei Zi-Yi Zhao Jing-Jing Li Jinli Zhang Ming Lu Xiao-Qin Liu Guoliang Liu Jiandong Pang Lin-Bing Sun . Topology guided construction of MOF by linking Zr-MOLs with perylene diimide motifs for photocatalytic oxidation. Chinese Journal of Structural Chemistry, 2025, 44(8): 100625-100625. doi: 10.1016/j.cjsc.2025.100625

    15. [15]

      Yun Zhou Geqian Fang Haiyan Wang Wenjun Yu Chun Zhu Jin-Xia Liang Jian Lin . Non-covalent interactions between adsorbed •OH species and UiO-66-NH2 for methane hydroxylation. Chinese Journal of Structural Chemistry, 2025, 44(8): 100629-100629. doi: 10.1016/j.cjsc.2025.100629

    16. [16]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    17. [17]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    18. [18]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    19. [19]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    20. [20]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

Metrics
  • PDF Downloads(14)
  • Abstract views(1970)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return