Citation: Shokrollahi Ardeshir, Kashkoli Fariba Davoodi. Determination of Violet Covasol as a cosmetic dye in water samples by a CPE-Scanometry method[J]. Chinese Chemical Letters, ;2016, 27(5): 659-665. doi: 10.1016/j.cclet.2016.01.020 shu

Determination of Violet Covasol as a cosmetic dye in water samples by a CPE-Scanometry method

  • Corresponding author: Shokrollahi Ardeshir, ashokrollahi@mail.yu.ac.ir
  • Received Date: 2 February 2015
    Revised Date: 5 August 2015
    Accepted Date: 5 January 2016
    Available Online: 23 May 2016

Figures(7)

  • The trace amounts of Violet Covasol as a cosmetic dye was determined by an efficient cloud point extraction-Scanometry (CPE-Scanometry) method. This method has many advantages such as novelty, facility, high speed, sensitivity, low cost and safety. The method is based on the CPE of an analyte from an aqueous solution, diluting the extracted surfactant-rich phase with ethanol, transferring to Plexiglas® cell and scanning of the cells containing the analyte solution with a scanner and measuring the RGB parameters with software written in visual basic (VB 6) media. Parameters impacting the extraction efficiency such as pH of the system, the concentration of surfactant, equilibration temperature and time were optimized. Detection limit (DL), relative standard deviation (RSD) and linear range for the proposed method are 0.026, 0.71 and 0.16-6.6 μg mL-1 respectively. Themethod was successfully applied for the determination of Violet Covasol dye in several water samples, including a water sample containing the dye as a tracer (to investigate subsurface water movement).
  • 加载中
    1. [1]

      Chen L.G., Zhao Q., Jin H.Y.. Determination of xanthohumol in beer based on cloud point extraction coupled with high performance liquid chromatography[J]. Talanta, 2010,81:692-699.

    2. [2]

      Pourreza N., Rastegarzadeh S., Larki A.. Determination of Allura red in food samples after cloud point extraction using mixed micelles[J]. Food Chem., 2011,126:1465-1469.

    3. [3]

      Zhang W.J., Duan C.M., Wang M.L.. Analysis of seven sulphonamides in milk by cloud point extraction and high performance liquid chromatography[J]. Food Chem., 2011,126:779-785.

    4. [4]

      Fontana A.R., Silva M.F., Martínez L.D., Wuilloud R.G., Altamirano J.C.. Determination of polybrominated diphenyl ethers in water and soil samples by cloud point extraction-ultrasound-assisted back-extraction-gas chromatography-mass spectrometry[J]. J. Chromatogr. A, 2009,1216:4339-4346.

    5. [5]

      Shokrollahi A., Ghaedi M., Gharaghani S., Mohammad M.R., Soylak M.. Cloud point extraction for the determination of copper in environmental samples by flame atomic absorption spectrometry[J]. Quím. Nova, 2008,31:70-74.

    6. [6]

      Shokrollahi A., Eslami S., Kianfar A.H.. Flame atomic absorption determination of Ni2+, Cu2+ and Co2+ ions in some water and food samples after cloud point extraction using a Thio Schiff-base as a new complexing agent[J]. Chem. Sci. Trans., 2012,1:217-225.

    7. [7]

      Ghaedi M., Shokrollahi A., Mehrnoosh R., Hossaini O., Soylak M.. Combination of cloud point extraction and flame atomic absorption spectrometry for preconcentration and determination of trace iron in environmental and biological samples[J]. Cent. Eur. J. Chem., 2008,6:488-496.

    8. [8]

      Sun M., Wu Q.H.. Determination of trace bismuth in human serum by cloud point extraction coupled flow injection inductively coupled plasma optical emission spectrometry[J]. J. Hazard. Mater., 2011,192:935-939.

    9. [9]

      Carabias-Martínez R., Rodríguez-Gonzalo E., Moreno-Cordero B.. Surfactant cloud point extraction and preconcentration of organic compounds prior to chromatography and capillary electrophoresis[J]. J. Chromatogr. A, 2000,902:251-265.

    10. [10]

      Zhu X.S., Zhu X.H., Hu Y.Y., Yu S.H., Wang B.S.. Cloud point extraction of serum albumin and its spectrophotometric determination in serum samples[J]. Anal. Lett., 2006,39:1853-1864.

    11. [11]

      Arain M.S., Kazi T.G., Afriidi H.I.. Preconcentration and determination of manganese in biological samples by dual-cloud point extraction and coupled with flame atomic absorption spectrometry[J]. J. Anal. At. Spectrom., 2014,29:2349-2355.

    12. [12]

      Liu W., Zhao W.J., Chen J.B., Yang M.M.. A cloud point extraction approach using Triton X-100 for the separation and preconcentration of Sudan dyes in chilli powder[J]. Anal. Chim. Acta, 2007,605:41-45.

    13. [13]

      Alam M.S.. Kabir-ud-Din, Investigation of the role of electrolytes and non-electrolytes on the cloud point and dye solubilization in antidepressant drug imipramine hydrochloride solutions[J]. Colloids Surf. B Biointerfaces, 2008,65:74-79.

    14. [14]

      Purkait M.K., Banerjee S., Mewara S., DasGupta S., De S.. Cloud point extraction of toxic eosin dye using Triton X-100 as nonionic surfactant[J]. Water Res., 2005,39:3885-3890.

    15. [15]

      Shokrollahi A., Abbaspour A., Azami Ardekani Z., Malekhosseinia Z., Alizadeh A.. CPE-Paptode as a new technique for determination of dyes:application for determination of acid red 151[J]. Anal. Methods, 2012,4:502-507.

    16. [16]

      Lopes A.S., Garcia J.S., Catharino R.R.. Cloud point extraction applied to casein proteins of cow milk and their identification by mass spectrometry[J]. Anal. Chim. Acta, 2007,590:166-172.

    17. [17]

      Madej K.. Microwave-assisted and cloud-point extraction in determination of drugs and other bioactive compounds[J]. TrAC Trends Anal. Chem., 2009,28:436-446.

    18. [18]

      Rukhadze M.D., Tsagareli S.K., Sidamonidze N.S., Meyer V.R.. Cloud-point extraction for the determination of the free fraction of antiepileptic drugs in blood plasma and saliva[J]. Anal. Biochem., 2000,287:279-283.

    19. [19]

      Tang A.N., Jiang D.Q., Yan X.P.. Cloud point extraction preconcentration for capillary electrophoresis of metal ions[J]. Anal. Chim. Acta, 2004,507:199-204.

    20. [20]

      Luconi M.O., Olsina R.A., Fernández L.P., Silva M.F.. Determination of lead in human saliva by combined cloud point extraction-capillary zone electrophoresis with indirect UV detection[J]. J. Hazard. Mater., 2006,128:240-246.

    21. [21]

      Materna K., Milosz I., Miesiac I., Cote G., Szymanowski J.. Removal of phenols from aqueous streams by the cloud point extraction technique with oxyethylated methyl dodecanoates as surfactants[J]. Environ. Sci. Technol., 2001,35:2341-2346.

    22. [22]

      Komáromy-Hiller G., von Wandruszka R.. Decontamination of oil-polluted soil by cloud point extraction[J]. Talanta, 1995,42:83-88.

    23. [23]

      Arain S.S., Kazi T.G., Arain J.B.. Preconcentration of toxic elements in artificial saliva extract of different smokeless tobacco products by dual-cloud point extraction[J]. Microchem. J., 2014,112:42-49.

    24. [24]

      Quina F.H., Hinze W.L.. Surfactant-mediated cloud point extractions:an environmentally benign alternative separation approach[J]. Ind. Eng. Chem. Res., 1999,38:4150-4168.

    25. [25]

      Carabias-Martínez R., Rodríguez-Gonzalo E., Domínguez-Alvarez J., Hernández-Méndez J.. Cloud point extraction as a preconcentration step prior to capillary electrophoresis[J]. Anal. Chem., 1999,71:2468-2474.

    26. [26]

      Ojeda C.B., Rojas F.S.. Separation and preconcentration by a cloud point extraction procedure for determination of metals:an overview[J]. Anal. Bioanal. Chem., 2009,394:759-782.

    27. [27]

      Wang L., Cai Y.Q., He B.. Determination of estrogens in water by HPLC-UV using cloud point extraction[J]. Talanta, 2006,70:47-51.

    28. [28]

      Sikalos T.I., Paleologos E.K.. Cloud point extraction coupled with microwave or ultrasonic assisted back extraction as a preconcentration step prior to gas chromatography[J]. Anal. Chem., 2005,77:2544-2549.

    29. [29]

      Cerutti S., Silva M.F., Gásquez J.A., Olsina R.A., Martínez L.D.. Cloud point preconcentration prior to capillary zone electrophoresis:simultaneous determination of platinum and palladium at trace levels[J]. Electrophoresis, 2005,26:3500-3506.

    30. [30]

      Yao B.J., Yang L., Hu Q., Shigendo A.. Cloud point extraction of polycyclic aromatic hydrocarbons in aqueous solution with silicone surfactants[J]. Chin. J. Chem. Eng., 2007,15:468-473.

    31. [31]

      Wen X.D., Wu P., Chen L., Hou X.D.. Determination of cadmium in rice and water by tungsten coil electrothermal vaporization-atomic fluorescence spectrometry and tungsten coil electrothermal atomic absorption spectrometry after cloud point extraction[J]. Anal. Chim. Acta, 2009,650:33-38.

    32. [32]

      Li Y.J., Hu B.. Sequential cloud point extraction for the speciation of mercury in seafood by inductively coupled plasma optical emission spectrometry[J]. Spectrochim. Acta Part B At. Spectrosc., 2007,62:1153-1160.

    33. [33]

      Shokrollahi A., Ghaedi M., Hossaini O., Khanjari N., Soylak M.. Cloud point extraction and flame atomic absorption spectrometry combination for copper (Ⅱ) ion in environmental and biological samples[J]. J. Hazard. Mater., 2008,160:435-440.

    34. [34]

      Jiang X.M., Wen S.P., Xiang G.Q.. Cloud point extraction combined with electrothermal atomic absorption spectrometry for the speciation of antimony (Ⅲ) and antimony (V) in food packaging materials[J]. J. Hazard. Mater., 2010,175:146-150.

    35. [35]

      Gil R.A., Salonia J.A., Gásquez J.A.. Flow injection system for the on-line preconcentration of Pb by cloud point extraction coupled to USN-ICP OES[J]. Microchem. J., 2010,95:306-310.

    36. [36]

      Shokrollahi A., Roozestan T.. CPE-Scanometry as a new technique for the determination of dyes:application for the determination of fast green FCF dye and comparison with spectrophotometric results[J]. Anal. Methods, 2013,5:4824-4831.

    37. [37]

      Abbaspour A., Khajehzadeha A., Ghaffarinejad A.. A simple and cost-effective method, as an appropriate alternative for visible spectrophotometry:development of a dopamine biosensor[J]. Analyst, 2009,134:1692-1698.

    38. [38]

      Abbaspour A., Valizadeha H., Khajehzadeh A.. A simple, fast and cost effective method for detection and determination of dopamine in bovine serum[J]. Anal. Methods, 2011,3:1405-1409.

    39. [39]

      Abbaspour A., TalebanpourBayat E., Mirahmadi E.. A reliable and budget-friendly, solution-based analysis of multiple analytes of boiler water based on reflection scanometry[J]. Anal. Methods, 2012,4:1968-1975.

    40. [40]

      Ahlström L.H., Eskilsson C.S., Bjö rklund E.. Determination of banned azo dyes in 310 consumer goods[J]. TrAC Trends Anal. Chem., 2005,24:49-56.

    41. [41]

      M. Sedghi-Asl, Optimization of Seepage Control Measures under Coastal Dikes Using Numerical and Laboratory Models, University of Tehran, Karaj, 2005.

    42. [42]

      J.A. Wenninger, R.C. Canterbery, G.N. McEwen, International Cosmetic Ingredient Dictionary and Handbook, 8th ed., Cosmetic Toiletry & Fragrance Association, Washington, 2000.

    43. [43]

      <http://chem.sis.nlm.nih.gov/chemidplus/rn/4430-18-6>.

    44. [44]

      Hazleton Laboratories, Inc., Petition to FDA dated July 1 to list Ext. D & C Violet No.2 as suitable and safe for use in externally applied cosmetics, Unpublished data contained in CTFA's FDA Master le, 1968.

    45. [45]

      American Cyanamid Company, Report on Ext. D & C Violet No. 2-Three-month repeated applications to intact rabbit skin. Report 65-48 dated May 11. Unpublished data contained in the Cosmetic, Toiletry, and Fragrance Association's (CTFA's) FDA Master le, 1965.

    46. [46]

      American Cyanamid Company, Report on Ext. D & C Violet No. 2-Three-week repeated applications to abraded guinea pig skin. Report 66-50 dated July 5. Unpublished data contained in CTFA's FDA Master le, 1966.

    47. [47]

      American Cyanamid Company, Report on Ext. D & C Violet No. 2-Lifetime skin painting on female mice. Report 67-65 dated Apr 18. Unpublished data contained in CTFA's FDA Master le, 1967.

    48. [48]

      Brown J.P., Brown R.J.. Mutagenesis by 9, 10-anthraquinone derivatives and related compounds in Salmonella typhimurium[J]. Mutat. Res., 1976,40:203-224.

    49. [49]

      <http://www.chemexper.com/search/cas/4430186.html>.

    50. [50]

      Wang C.C., Masi A.N., Fernández L.. On-line micellar-enhanced spectrofluorimetric determination of rhodamine dye in cosmetics[J]. Talanta, 2008,75:135-140.

    51. [51]

      Capitán-Vallvey L.F., Iglesias N.N., de Orbe Payá I., Castañeda R.A.. Simultaneous determination of quinoline yellow and brilliant blue FCF in cosmetics by solidphase spectrophotometry[J]. Talanta, 1996,43:1457-1463.

    52. [52]

      Capitán-Vallvey L.F., Valencia M.C., Nicolás E.A.. Flow injection analysis with online solid phase extraction for spectrophotometric determination of ponceau 4R and its subsidiary unsulfonated dye in sweets and cosmetic products[J]. Microchim. Acta, 2002,138:69-76.

    53. [53]

      Nevado J.J.B., Flores J.R., Llerena M.J.V.. Simultaneous determination of tartrazine and sunset yellow by derivative spectrophotometry and ratio spectra derivative[J]. Talanta, 1993,40:1391-1396.

    54. [54]

      Ohno T., Mikami E., Matsumoto H.. Identification of oil-soluble coal tar dyes in cosmetics using reversed-phase TLC/scanning densitometry[J]. J. Health Sci., 2003,49:401-404.

    55. [55]

      Sjöberg A.M., Olkkonen C.. Determination of synthetic organic colours in lipsticks by thin-layer and high-performance liquid chromatography[J]. J. Chromatogr. A, 1985,318:149-154.

    56. [56]

      Wegener J.W., Klamer J.C., Govers H., Brinkman U.A.Th.. Determination of organic colorants in cosmetic products by high-performance liquid chromatography[J]. Chromatographia, 1987,24:865-875.

    57. [57]

      Sun H.W., Wang F.C., Ai L.F.. Determination of banned 10 azo-dyes in hot chili products by gel permeation chromatography-liquid chromatography-electrospray ionization-tandem mass spectrometry[J]. J. Chromatogr. A, 2007,1164:120-128.

    58. [58]

      Katata L., Nagaraju V., Crouch A.M.. Determination of ethylenediaminetetraacetic acid, ethylenediaminedisuccinic acidand iminodisuccinic acid incosmetic products by capillary electrophoresis and high performance liquid chromatography[J]. Anal. Chim. Acta, 2006,579:177-184.

    59. [59]

      Noguerol-Cal R., López-Vilariño J.M., Fernández Martínez G., Barral-Losada L., González-Rodríguez M.V.. High-performance liquid chromatographyanalysis of tendyes for control of safety of commercial articles[J]. J. Chromatogr. A, 2008,1179:152-160.

    60. [60]

      Chen M., Moir D., Benoit F.M., Kubwabo C.. Purification and identification of several sulphonated azo dyes using reversed-phase preparative high-performance liquid chromatography[J]. J. Chromatogr. A, 1998,825:37-44.

    61. [61]

      Rastogi S.C., Barwick V.J., Carter S.V.. Identification of organic colourants in cosmetics by HPLC-diode array detection[J]. Chromatographia, 1997,45:215-228.

    62. [62]

      Gagliardi L., Cavazzutti G., Amato A., Basili A., Tonelli D.. Identification of cosmetic dyes by ion-pair reversed-phase high-performance liquid chromatography[J]. J. Chromatogr. A, 1987,394:345-352.

    63. [63]

      Wu K.S., Wu A.B., Huang M.C., Chen C.Y.. Identification of illegal coal tar dyes constituents in mucous cosmetics by HPLC method[J]. J. Food Drug Anal., 1999,7:95-102.

    64. [64]

      Wegener J.W.M., Grünbauer H.J.M., Fordham R.J., Karcher W.. A combined HPLCVIS spectrophotometric method for the identification of cosmetic dyes[J]. J. Liquid Chromatogr., 1984,7:809-821.

    65. [65]

      Gagliardi L., De Orsi D., Cavazzutti G., Multari G., Tonelli D.. HPLC determination of rhodamine B (C.I. 45170) in cosmetic products[J]. Chromatographia, 1996,43:76-78.

    66. [66]

      Sun X.Y., Li Y., Liu L.. Simultaneous determination of 9 water-soluble colorants in cosmetics by high performance liquid chromatography[J]. Chin. J. Chromatogr., 2009,27:852-855.

    67. [67]

      Voyksner R.D., Straub R., Keever J.T., Freeman H.S., Hsu W.N.. Determination of aromatic amines originating from azo dyes by chemical reduction combined with liquid chromatography/mass spectrometry[J]. Environ. Sci. Technol., 1993,27:1665-1672.

    68. [68]

      Gans P., Sabatini A., Vacca A.. Investigation of equilibria in solution. determination of equilibrium constants with the HYPERQUAD suite of programs[J]. Talanta, 1996,43:1739-1753.

    69. [69]

      Gans P., Sabatini A., Vacca A.. Determination of equilibrium constants from spectrophotometric data obtained from solutions of known pH:the program pHab[J]. Ann. Chim., 1999,89:45-49.

    70. [70]

      Alderighi L., Gans P., Ienco A.. Hyperquad simulation and speciation (HySS):a utility program for the investigation of equilibria involving soluble and partially soluble species[J]. Coord. Chem. Rev., 1999,184:311-318.

    71. [71]

      Rial-Otero R., González-Rodríguez R.M., Cancho-Grande B., SimalGándara J.. Parameters affecting extraction of selected fungicides from vineyard soils[J]. J. Agric. Food Chem., 2004,52:7227-7234.

  • 加载中
    1. [1]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    2. [2]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    3. [3]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    4. [4]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    5. [5]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    6. [6]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    7. [7]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    8. [8]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    9. [9]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    10. [10]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    11. [11]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    12. [12]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    13. [13]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    14. [14]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    15. [15]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    16. [16]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    17. [17]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    18. [18]

      Jiechen LiuXiaoguang LiRuiyang XiaYuqi WangFenghe ZhangYongzhi PangQing Li . Efficient suppression of oral squamous cell carcinoma through spatial dimension conversion drug delivery systems-enabled immunomodulatory-photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109619-. doi: 10.1016/j.cclet.2024.109619

    19. [19]

      Kezuo DiJie WeiLijun DingZhiying ShaoJunling ShaXilong ZhouHuadong HengXujing FengKun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911

    20. [20]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

Metrics
  • PDF Downloads(0)
  • Abstract views(619)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return