[bmim]OH: An efficient catalyst for the synthesis of mono and bis spirooxindole derivatives in ethanol at room temperature
- Corresponding author: Dalal Dipak S. , dsdalal2007@gmail.com
Citation: Padvi Swapnil A., Tayade Yogesh A., Wagh Yogesh B. , Dalal Dipak S. . [bmim]OH: An efficient catalyst for the synthesis of mono and bis spirooxindole derivatives in ethanol at room temperature[J]. Chinese Chemical Letters, ;2016, 27(5): 714-720. doi: 10.1016/j.cclet.2016.01.016
(a) T. Welton, Room-temperature ionic liquids. solvents for synthesis and catalysis, Chem. Rev. 99(1999) 2071-2083;
(b) P. Wasserscheid, W. Keim, Ionic liquids-new "solutions" for transition metal catalysis, Angew. Chem. Int. Ed. 39(2000) 3772-3789;
(c) K. Gong, H. Wang, D. Fang, et al., Basic ionic liquid as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes in aqueous media, Catal. Commun. 9(2008) 650-653;
(d) H. Singh, S. Kumari, J.M. Khurana, A new green approach for the synthesis of 12-aryl-8, 9,10,12-tetrahydrobenzo[a]xanthenes-11-one derivatives using task specific acidic ionic liquid[NMP]H2PO4, Chin. Chem. Lett. 25(2014) 1336-1340.
(a) R. Sheldon, Catalytic reactions in ionic liquids, Chem. Commun. (2001) 2399-2400;
(b) J.R. Harjani, S.J. Nara, M.M. Salunkhe, Lewis acidic ionic liquids for the synthesis of electrophilic alkenes via the knoevenagel condensation, Tetrahedron Lett. 43(2002) 1127-1130;
(c) A.E. Visser, R.P. Swatloski, W.M. Reichert, et al., Task-specific ionic liquids for the extraction of metal ions from aqueous solutions, Chem. Commun. (2001) 135-136.
Lee S.G.. Functionalized imidazolium salts for task-specific ionic liquids and their applications[J]. Chem. Commun., 2006:1049-1063.
(a) S. Chowdhury, R.S. Mohan, J.L. Scott, Reactivity of ionic liquids, Tetrahedron 63(2007) 2363-2389;
(b) W. Bao, Z. Wang, An effective synthesis of bromoesters from aromatic aldehydes using tribromide ionic liquid based on L-prolinol as reagent and reaction medium under mild conditions, Green Chem. 8(2006) 1028-1033;
(c) D. Zhao, M. Wu, Y. Kou, et al., Ionic liquids:applications in catalysis, Catal. Today 74(2002) 157-189;
(d) J. Dupont, R.F. de Souza, P.A.Z. Suarez, Ionic liquid (molten salt) phase organometallic catalysis, Chem. Rev. 102(2002) 3667-3692;
(e) K. Qiao, C. Yakoyama, Novel acidic ionic liquids catalytic systems for friedel crafts alkylation of aromatic compounds with alkenes, Chem. Lett. 33(2004) 472-473;
(f) W. Sun, C.G. Xia, H.W. Wang, Synthesis of aziridines from imines and ethyl diazoacetate in room temperature ionic liquids, Tetrahedron Lett. 44(2003) 2409-2411.
(a) J.H. Davis, Task-specific ionic liquids, Chem. Lett. 33(2004) 1072-1077;
(b) T. Akiyama, A. Suzuki, K. Fuchibe, Mannich-type reaction promoted by an ionic liquid, Synlett 33(2005) 1024-1026;
(c) B.C. Ranu, S. Banerjee, A. Das, Catalysis by ionic liquids:cyclopropyl carbonyl rearrangements catalyzed by[pmim]Br under organic solvent free conditions, Tetrahedron Lett. 47(2006) 881-884;
(d) J.P. Hallett, T. Welton, Room-temperature ionic liquids:solvents for synthesis and catalysis 2, Chem. Rev. 111(2011) 3508-3576.
(a) Y. Gu, Multicomponent reactions in unconventional solvents:state of the art, Green Chem. 14(2012) 2091-2128;
(b) L. Hu, O. Ramstrom, Silver-catalyzed dynamic systemic resolution of α-iminonitriles in a 1,3-dipolar cycloaddition process, Chem. Commun. 50(2014) 3792-3794.
(a) X. Li, Y. Zhao, H. Qu, et al., Organocatalytic asymmetric multicomponent reactions of aromatic aldehydes and anilines with β-ketoesters:facile and atomeconomical access to chiral tetrahydropyridines, Chem. Commun. 49(2013) 1401-1403;
(b) E. Ruijter, R. Scheffelaar, R. Orru, Multicomponent reaction design in the quest for molecular complexity and diversity, Angew. Chem. Int. Ed. 50(2011) 6234-6246;
(c) A. Domling, Recent developments in isocyanide based multicomponent reactions in applied chemistry, Chem. Rev. 106(2006) 17-89.
(a) R.V.A. Orru, M. de Greef, Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds, Synthesis 10(2003) 1471-1499;
(b) G. Balme, E. Bossharth, N. Monteiro, Pd-assisted multicomponent synthesis of heterocycles, Eur. J. Org. Chem. 21(2003) 4101-4111;
(c) S. Brase, C. Gil, K. Knepper, The recent impact of solid-phase synthesis on medicinally relevant benzoannelated nitrogen heterocycles, Bioorg. Med. Chem. 10(2002) 2415-2437;
(d) A. Domling, I. Ugi, Multicomponent reactions with isocyanides, Angew. Chem. Int. Ed. 39(2000) 3168-3170.
(a) M. Srivastava, P. Rai, J. Singh, et al., An environmentally friendlier approachionic liquid catalysed, water promoted and grinding induced synthesis of highly functionalised pyrazole derivatives, RSC Adv. 3(2013) 16994-16998;
(b) L.R. Wen, Z.R. Li, M. Li, et al., Solvent-free and efficient synthesis of imidazo[1,2-a]pyridine derivatives via a one-pot three-component reaction, Green Chem. 14(2012) 707-716;
(c) H. Chen, D. Shi, Efficient one-pot synthesis of spiro[indoline-3,4'-pyrazolo[3,4-e] [1,4] thiazepine]dione via three-component reaction, Tetrahedron 67(2011) 5686-5692.
(a) G. Bartoli, G. Bencivenni, R. Dalpozzo, Organocatalytic strategies for the asymmetric functionalization of indoles, Chem. Soc. Rev. 39(2010) 4449-4465;
(b) L. Joucla, L. Djakovitch, Transition metal-catalysed, direct and site-selective N1-, C2- or C3-arylation of the indole nucleus:20 years of improvements, Adv. Synth. Catal. 351(2009) 673-714;
(c) M. Bandini, A. Eichholzer, Catalytic functionalization of indoles in a new dimension, Angew Chem. Int. Ed. 48(2009) 9608-9644;
(d) S. Cacchi, G. Fabrizi, Synthesis and functionalization of indoles through palladium-catalyzed reactions, Chem. Rev. 105(2005) 2873-2920;
(e) Y. Kamano, H.P. Zhang, Y. Ichihara, et al., Convolutamydine a, a novel bioactive hydroxyoxindole alkaloid from marine bryozoan amathia convolute, Tetrahedron Lett. 36(1995) 2783-2784.
(a) J. Xue, Y. Zhang, X.I. Wang, et al., Photoinduced reactions of 1-acetylisatin with phenylacetylenes, Org. Lett. 2(2000) 2583-2586;
(b) D.A. Klumpp, K.Y. Yeung, G.K.S. Prakash, et al., preparation of 3,3-diaryloxindoles by superacid-induced condensations of isatins and aromatics with a combinatorial approach, J. Org. Chem. 63(1998) 4481-4484.
(a) J.F.M. Da Silva, S.J. Garden, A.C. Pinto, The chemistry of isatins:a review from 1975 to 1999, J. Braz. Chem. Soc. 12(2001) 273-324;
(b) A.H. Abdel, E.M. Keshk, M.A. Hannaand, et al., Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents, Bioorg. Med. Chem. 12(2004) 2483-2488.
(a) F. Zhou, Y.L. Liu, J. Zhou, Catalytic asymmetric synthesis of oxindoles bearing a tetrasubstituted stereocenter at the C-3 position, Adv. Synth. Catal. 352(2010) 1381-1407;
(b) C.V. Galliford, K.A. Scheidt, Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents, Angew. Chem. Int. Ed. 46(2007) 8748-8758;
(c) H. Lin, S.J. Danishefsky, Gelsemine:a thought-provoking target for total synthesis, Angew. Chem. Int. Ed. 42(2003) 36-51;
(d) J. Ma, S.M. Hecht, Javaniside, a novel DNA cleavage agent from Alangium javanicum having an unusual oxindole skeleton, Chem. Commun. (2004) 1190-1191;
(e) T.H. Kang, K. Matsumoto, M. Tohda, et al., Pteropodine and isopteropodine positively modulate the function of rat muscarinic M1 and 5-HT2 receptors expressed in Xenopus oocyte, Eur. J. Pharmacol. 444(2002) 39-45;
(f) P.R. Sebahar, R.M. Williams, The asymmetric total synthesis of (+)- and (-)-spirotryprostatin B, J. Am. Chem. Soc. 122(2000) 5666-5667.
Kumari G., Nutan , Modi M.. Rhodium(Ⅱ) acetate-catalyzed stereoselective synthesis, SAR and anti-HIV activity of novel oxindoles bearing cyclopropane ring[J]. Eur. J. Med. Chem., 2011,46:1181-1188.
Vintonyak V.V., Warburg K., Kruse H.. Identification of thiazolidinones spirofused to indolin-2-ones as potent and selective inhibitors of the mycobacterium tuberculosis protein tyrosine phosphatase B[J]. Angew. Chem. Int. Ed. Engl., 2010,49:5902-5905.
Yu B., Yu D.Q., Liu H.M.. Spirooxindoles:promising scaffolds for anticancer agents[J]. Eur. J. Med. Chem., 2015,97:673-698.
Tian Y., Nam S., Liu L.. Spirooxindole derivative SOID-8 induces apoptosis associated with inhibition of JAK2/STAT3 signaling in melanoma cells[J]. PLoS ONE, 2012(7)e49306.
(a) Y. Li, H. Chen, C. Shi, et al., Efficient one-pot synthesis of spirooxindole derivatives catalyzed by L-proline in aqueous medium, J. Comb. Chem. 12(2010) 231-237;
(b) L.M. Wang, N. Jiao, J. Qiu, et al., Sodium stearate-catalyzed multicomponent reactions for efficient synthesis of spirooxindoles in aqueous micellar media, Tetrahedron 66(2010) 339-343;
(c) M. Dabiri, M. Bahramnejad, M. Baghbanzadeh, Ammonium salt catalyzed multicomponent transformation:simple route to functionalized spirochromenes and spiroacridines, Tetrahedron 65(2009) 9443-9447;
(d) S. Gao, C.H. Tsai, C. Tseng, et al., Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4H-chromene and N-arylquinoline derivatives in aqueous media, Tetrahedron 64(2008) 9143-9149;
(e) Y.M. Litvinov, V.Y. Mortikov, A.M. Shestopalov, Versatile three-component procedure for combinatorial synthesis of 2-aminospiro[(3'H)-indol3',4-(4H)-pyrans], J. Comb. Chem. 10(2008) 741-745;
(f) G. Shanthi, G. Subbulakshmi, P.T. Perumal, A new InCl3-catalyzed facile and efficient method for the synthesis of spirooxindoles under conventional and solvent-free microwave conditions, Tetrahedron 63(2007) 2057-2063;
(g) R.G. Redkin, L.A. Shemchuk, V.P. Chernykh, et al., Synthesis and molecular structure of spirocyclic 2-oxindole derivatives of 2-amino-4H-pyran condensed with the pyrazolic nucleus, Tetrahedron 63(2007) 11444-11450;
(h) Y. Caibo, G. Xuepin, W. Shenghua, et al., Green catalyzed synthesis method of spirooxindole derivative by using basic ionic liquid catalyst, CN 103833764 A 20140604.
Wu C., Shen R., Chen J.. An efficient method for multicomponent synthesis of spiro[J]. Bull. Korean Chem. Soc., 2013,34:2431-2435.
Rai P., Srivastava M., Singh J.. Chitosan/ionic liquid forms a renewable and reusable catalyst system used for the synthesis of highly functionalized spiro derivatives[J]. New J. Chem., 2014,38:3181-3186.
Guo R.Y., An Z.M., Mo L.P.. Meglumine promoted one-pot, four-component synthesis of pyranopyrazole derivatives[J]. Tetrahedron, 2013,69:9931-9938.
Zou Y., Hu Y., Liu H.. Rapid and efficient ultrasound-assisted method for the combinatorial synthesis of spiro[J]. ACS Comb. Sci., 2012,14:38-43.
Elinson M.N., Dorofeev A.S., Miloserdov F.M.. Electrocatalytic multicomponent assembling of isatins, 3-methyl-2-pyrazolin-5-ones and malononitrile:facile and convenient way to functionalized spirocyclic[J]. Mol. Divers., 2009,13:47-52.
(a) B.M. Rao, G.N. Reddy, T.V. Reddy, et al., Carbon-SO3H:a novel and recyclable solid acid catalyst for the synthesis of spiro[4H-pyran-3,30-oxindoles], Tetrahedron Lett. 54(2013) 2466-2471;
(b) L.A. Shemchuk, V.P. Chernykh, R.G. Redkin, Synthesis of fused 2'-amino-3'-Rspiro-[indole-3,4'-pyran]-2(1H)-ones, Russ. J. Org. Chem. 44(2008) 1789-1794.
Zhao L., Zhou B., Li Y.. An efficient one-pot three-component reaction for synthesis of spirooxindole derivatives in water media under catalyst-free condition[J]. Heteroat. Chem., 2011,22:673-677.
Elinson M.N., Ilovaisky A.I., Merkulova V.M.. Non-catalytic thermal multicomponent assembling of isatin, cyclic CH-acids and malononitrile:an efficient approach to spirooxindole scaffold[J]. Mendeleev Commun., 2012,22:143-144.
Safaei H.R., Shekouhy M., Rahmanpur S.. Glycerol as a biodegradable and reusable promoting medium for the catalyst-free one-pot three component synthesis of 4H-pyrans[J]. Green Chem., 2012,14:1696-1704.
Ponpandian T., Muthusubramanian S.. One-pot, catalyst-free synthesis of spirooxindole and 4H-pyran derivatives[J]. Synth. Commun., 2014,44:868-874.
Srivastava M., Rai P., Singh J.. Bmim(OH)/chitosan/C2H5OH synergy:grinding induced, a new route for the synthesis of spirooxindole and its derivatives[J]. RSC Adv., 2014,4:30592-30597.
Riyaz S., Indrasena A., Naidu A.. Novel and thermally stable ionic liquid (TBA acetate) for domino reaction:synthesis of spirooxindoles via new mechanistic way,[J]. Indian J. Chem., 2014(B53B):1442-1447.
Satasia S.P., Kalaria P.N., Avalani J.R.. An efficient approach for the synthesis of spirooxindole derivatives catalyzed by novel sulfated choline based heteropolyanion at room temperature[J]. Tetrahedron, 2014,70:5763-5767.
Shaterian H.R., Arman M., Rigi F.. Domino knoevenagel condensation, Michael addition, and cyclization using ionic liquid, 2-hydroxyethylammonium formate, as a recoverable catalyst[J]. J. Mol. Liq., 2011,158:145-150.
Hasaninejada A., Golzara N., Beyrati M.. Silica-bonded 5-n-propyl-octahydro-pyrimido[1, 2-a] azepinium chloride (SB-DBU)Cl as a highly efficient, heterogeneous and recyclable silica-supported ionic liquid catalyst for the synthesis of benzo[b]pyran, bis(benzo[b]pyran) and spiro-pyran derivatives[J]. J. Mol. Catal., A Chem., 2013,372:137-150.
Thakur A., Tripathi M., Rajesh U.C.. Ethylenediammonium diformate (EDDF) in PEG600:an efficient ambiphilic novel catalytic system for the one-pot synthesis of 4H-pyrans via knoevenagel condensation[J]. RSC. Adv., 2013,3:18142-18148.
Rad-Moghadam K., Youseftabar-Miri L.. Ambient synthesis of spiro[4H-pyranoxindole] derivatives under[BMIm]BF4 catalysis[J]. Tetrahedron, 2011,67:5693-5699.
Azizi N., Dezfooli S., Hashemi M.M.. Greener synthesis of spirooxindole in deep eutectic solvent[J]. J. Mol. Liq., 2014,194:62-67.
(a) Y.B. Wagh, Y.A. Tayade, S.A. Padvi, et al., A cesium fluoride promoted efficient and rapid multicomponent synthesis of functionalized 2 amino-3-cyano-4Hpyran and spirooxindole derivatives, Chin. Chem. Lett. 26(2015) (2015) 1273-1277;
(b) Y.A. Tayade, S.A. Padvi, Y.B. Wagh, et al., β-Cyclodextrin as a supramolecular catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole and spiro[indoline-3,4'-pyrano[2,3-c]pyrazole] in aqueous medium, Tetrahedron Lett. 56(2015) 2441-2447;
(c) Y.A. Tayade, D.R. Patil, Y.B. Wagh, et al., An efficient synthesis of 3-indolyl-3 hydroxy oxindoles and 3,3-di(indolyl)indolin-2-ones catalyzed by sulfonated β-CD as a supramolecular catalyst in water, Tetrahedron Lett. 56(2015) 666-673;
(d) A.D. Jangale, P.K. Kumavat, Y.B. Wagh, et al., Green process development for the synthesis of aliphatic symmetrical N,N'-disubstituted thiourea derivatives in aqueous medium, Synth. Commun. 45(2015) 236-244;
(e) D.R. Patil, Y.B. Wagh, P.G. Ingole, et al., β-Cyclodextrin-mediated highly efficient[2+3] cycloaddition reactions for the synthesis of 5-substituted 1-H tetrazoles, New J. Chem. 37(2013) 3261-3266;
(f) D.R. Patil, D.S. Dalal, Biomimetic approach for the synthesis of N,N' diarylsubstituted formamidines catalyzed by β-cyclodextrin in water, Chin. Chem. Lett. 23(2012) 1125-1128.
Ranu B.C., Banerjee S.. Ionic liquid as catalyst and reaction medium. the dramatic influence of a task-specific ionic liquid, [bmim]OH, in michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles[J]. Org. Lett., 2005,7:3049-3052.
Feng Sha , Xinyan Wu , Ping Hu , Wenqing Zhang , Xiaoyang Luan , Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082
Tao Cao , Fang Fang , Nianguang Li , Yinan Zhang , Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
Yu Yao , Jinqiang Zhang , Yantao Wang , Kunsheng Hu , Yangyang Yang , Zhongshuai Zhu , Shuang Zhong , Huayang Zhang , Shaobin Wang , Xiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633
Rui Cheng , Tingting Zhang , Xin Huang , Jian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763
Huihui LIU , Baichuan ZHAO , Chuanhui WANG , Zhi WANG , Congyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059
Tong Zhang , Xiaojing Liang , Licheng Wang , Shuai Wang , Xiaoxiao Liu , Yong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889
Wei Sun , Anjing Liao , Li Lei , Xu Tang , Ya Wang , Jian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855
Xinlong Han , Huiying Zeng , Chao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817
Jiajia Wang , XinXin Ge , Yajing Xiang , Xiaoliang Qi , Ying Li , Hangbin Xu , Erya Cai , Chaofan Zhang , Yulong Lan , Xiaojing Chen , Yizuo Shi , Zhangping Li , Jianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819
Ke Zhang , Sheng Zuo , Pengyuan You , Tong Ru , Fen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254
Yin-Hang Chai , Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322
Guiyang Zheng , Xuelian Kang , Haoran Ye , Wei Fan , Christian Sonne , Su Shiung Lam , Rock Keey Liew , Changlei Xia , Yang Shi , Shengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817
Zhefei Hu , Jingwen Liao , Jiawen Zhou , Lulu Zhao , Yanjuan Liu , Yuefei Zhang , Wei Chen , Sheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961