Citation: Padvi Swapnil A.,  Tayade Yogesh A., Wagh Yogesh B. , Dalal Dipak S. . [bmim]OH: An efficient catalyst for the synthesis of mono and bis spirooxindole derivatives in ethanol at room temperature[J]. Chinese Chemical Letters, ;2016, 27(5): 714-720. doi: 10.1016/j.cclet.2016.01.016 shu

[bmim]OH: An efficient catalyst for the synthesis of mono and bis spirooxindole derivatives in ethanol at room temperature

  • Corresponding author: Dalal Dipak S. , dsdalal2007@gmail.com
  • Received Date: 9 October 2015
    Revised Date: 21 December 2015
    Accepted Date: 15 January 2016
    Available Online: 15 May 2016

Figures(5)

  • A rapid and efficient, one pot synthesis of spirooxindole derivatives has been attempted by threecomponent reaction of isatin, malononitrile and carbonyl compound possessing a reactive α-methylene group by using task specific ionic liquid, 1-butyl-3-methyl imidazolium hydroxide [bmim]OH as a catalyst. The important features of this methodology are straight forward route in short reaction time at room temperature and avoid any hazardous organic solvent, toxic catalyst, tedious purification step. Interestingly, this protocol is not only limited to mono-systems but also to the synthesis of newer bisspirooxindole system. The separation of the product and reusability of the catalyst are easy with excellent yield. The [bmim]OH catalyst system could be reused up to five recycles without appreciable loss of activity.
  • 加载中
    1. [1]

      (a) T. Welton, Room-temperature ionic liquids. solvents for synthesis and catalysis, Chem. Rev. 99(1999) 2071-2083;
      (b) P. Wasserscheid, W. Keim, Ionic liquids-new "solutions" for transition metal catalysis, Angew. Chem. Int. Ed. 39(2000) 3772-3789;
      (c) K. Gong, H. Wang, D. Fang, et al., Basic ionic liquid as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes in aqueous media, Catal. Commun. 9(2008) 650-653;
      (d) H. Singh, S. Kumari, J.M. Khurana, A new green approach for the synthesis of 12-aryl-8, 9,10,12-tetrahydrobenzo[a]xanthenes-11-one derivatives using task specific acidic ionic liquid[NMP]H2PO4, Chin. Chem. Lett. 25(2014) 1336-1340.

    2. [2]

      (a) R. Sheldon, Catalytic reactions in ionic liquids, Chem. Commun. (2001) 2399-2400;
      (b) J.R. Harjani, S.J. Nara, M.M. Salunkhe, Lewis acidic ionic liquids for the synthesis of electrophilic alkenes via the knoevenagel condensation, Tetrahedron Lett. 43(2002) 1127-1130;
      (c) A.E. Visser, R.P. Swatloski, W.M. Reichert, et al., Task-specific ionic liquids for the extraction of metal ions from aqueous solutions, Chem. Commun. (2001) 135-136.

    3. [3]

      Lee S.G.. Functionalized imidazolium salts for task-specific ionic liquids and their applications[J]. Chem. Commun., 2006:1049-1063.

    4. [4]

      (a) S. Chowdhury, R.S. Mohan, J.L. Scott, Reactivity of ionic liquids, Tetrahedron 63(2007) 2363-2389;
      (b) W. Bao, Z. Wang, An effective synthesis of bromoesters from aromatic aldehydes using tribromide ionic liquid based on L-prolinol as reagent and reaction medium under mild conditions, Green Chem. 8(2006) 1028-1033;
      (c) D. Zhao, M. Wu, Y. Kou, et al., Ionic liquids:applications in catalysis, Catal. Today 74(2002) 157-189;
      (d) J. Dupont, R.F. de Souza, P.A.Z. Suarez, Ionic liquid (molten salt) phase organometallic catalysis, Chem. Rev. 102(2002) 3667-3692;
      (e) K. Qiao, C. Yakoyama, Novel acidic ionic liquids catalytic systems for friedel crafts alkylation of aromatic compounds with alkenes, Chem. Lett. 33(2004) 472-473;
      (f) W. Sun, C.G. Xia, H.W. Wang, Synthesis of aziridines from imines and ethyl diazoacetate in room temperature ionic liquids, Tetrahedron Lett. 44(2003) 2409-2411.

    5. [5]

      (a) J.H. Davis, Task-specific ionic liquids, Chem. Lett. 33(2004) 1072-1077;
      (b) T. Akiyama, A. Suzuki, K. Fuchibe, Mannich-type reaction promoted by an ionic liquid, Synlett 33(2005) 1024-1026;
      (c) B.C. Ranu, S. Banerjee, A. Das, Catalysis by ionic liquids:cyclopropyl carbonyl rearrangements catalyzed by[pmim]Br under organic solvent free conditions, Tetrahedron Lett. 47(2006) 881-884;
      (d) J.P. Hallett, T. Welton, Room-temperature ionic liquids:solvents for synthesis and catalysis 2, Chem. Rev. 111(2011) 3508-3576.

    6. [6]

      (a) Y. Gu, Multicomponent reactions in unconventional solvents:state of the art, Green Chem. 14(2012) 2091-2128;
      (b) L. Hu, O. Ramstrom, Silver-catalyzed dynamic systemic resolution of α-iminonitriles in a 1,3-dipolar cycloaddition process, Chem. Commun. 50(2014) 3792-3794.

    7. [7]

      (a) X. Li, Y. Zhao, H. Qu, et al., Organocatalytic asymmetric multicomponent reactions of aromatic aldehydes and anilines with β-ketoesters:facile and atomeconomical access to chiral tetrahydropyridines, Chem. Commun. 49(2013) 1401-1403;
      (b) E. Ruijter, R. Scheffelaar, R. Orru, Multicomponent reaction design in the quest for molecular complexity and diversity, Angew. Chem. Int. Ed. 50(2011) 6234-6246;
      (c) A. Domling, Recent developments in isocyanide based multicomponent reactions in applied chemistry, Chem. Rev. 106(2006) 17-89.

    8. [8]

      (a) R.V.A. Orru, M. de Greef, Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds, Synthesis 10(2003) 1471-1499;
      (b) G. Balme, E. Bossharth, N. Monteiro, Pd-assisted multicomponent synthesis of heterocycles, Eur. J. Org. Chem. 21(2003) 4101-4111;
      (c) S. Brase, C. Gil, K. Knepper, The recent impact of solid-phase synthesis on medicinally relevant benzoannelated nitrogen heterocycles, Bioorg. Med. Chem. 10(2002) 2415-2437;
      (d) A. Domling, I. Ugi, Multicomponent reactions with isocyanides, Angew. Chem. Int. Ed. 39(2000) 3168-3170.

    9. [9]

      (a) M. Srivastava, P. Rai, J. Singh, et al., An environmentally friendlier approachionic liquid catalysed, water promoted and grinding induced synthesis of highly functionalised pyrazole derivatives, RSC Adv. 3(2013) 16994-16998;
      (b) L.R. Wen, Z.R. Li, M. Li, et al., Solvent-free and efficient synthesis of imidazo[1,2-a]pyridine derivatives via a one-pot three-component reaction, Green Chem. 14(2012) 707-716;
      (c) H. Chen, D. Shi, Efficient one-pot synthesis of spiro[indoline-3,4'-pyrazolo[3,4-e] [1,4] thiazepine]dione via three-component reaction, Tetrahedron 67(2011) 5686-5692.

    10. [10]

      (a) G. Bartoli, G. Bencivenni, R. Dalpozzo, Organocatalytic strategies for the asymmetric functionalization of indoles, Chem. Soc. Rev. 39(2010) 4449-4465;
      (b) L. Joucla, L. Djakovitch, Transition metal-catalysed, direct and site-selective N1-, C2- or C3-arylation of the indole nucleus:20 years of improvements, Adv. Synth. Catal. 351(2009) 673-714;
      (c) M. Bandini, A. Eichholzer, Catalytic functionalization of indoles in a new dimension, Angew Chem. Int. Ed. 48(2009) 9608-9644;
      (d) S. Cacchi, G. Fabrizi, Synthesis and functionalization of indoles through palladium-catalyzed reactions, Chem. Rev. 105(2005) 2873-2920;
      (e) Y. Kamano, H.P. Zhang, Y. Ichihara, et al., Convolutamydine a, a novel bioactive hydroxyoxindole alkaloid from marine bryozoan amathia convolute, Tetrahedron Lett. 36(1995) 2783-2784.

    11. [11]

      (a) J. Xue, Y. Zhang, X.I. Wang, et al., Photoinduced reactions of 1-acetylisatin with phenylacetylenes, Org. Lett. 2(2000) 2583-2586;
      (b) D.A. Klumpp, K.Y. Yeung, G.K.S. Prakash, et al., preparation of 3,3-diaryloxindoles by superacid-induced condensations of isatins and aromatics with a combinatorial approach, J. Org. Chem. 63(1998) 4481-4484.

    12. [12]

      (a) J.F.M. Da Silva, S.J. Garden, A.C. Pinto, The chemistry of isatins:a review from 1975 to 1999, J. Braz. Chem. Soc. 12(2001) 273-324;
      (b) A.H. Abdel, E.M. Keshk, M.A. Hannaand, et al., Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents, Bioorg. Med. Chem. 12(2004) 2483-2488.

    13. [13]

      (a) F. Zhou, Y.L. Liu, J. Zhou, Catalytic asymmetric synthesis of oxindoles bearing a tetrasubstituted stereocenter at the C-3 position, Adv. Synth. Catal. 352(2010) 1381-1407;
      (b) C.V. Galliford, K.A. Scheidt, Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents, Angew. Chem. Int. Ed. 46(2007) 8748-8758;
      (c) H. Lin, S.J. Danishefsky, Gelsemine:a thought-provoking target for total synthesis, Angew. Chem. Int. Ed. 42(2003) 36-51;
      (d) J. Ma, S.M. Hecht, Javaniside, a novel DNA cleavage agent from Alangium javanicum having an unusual oxindole skeleton, Chem. Commun. (2004) 1190-1191;
      (e) T.H. Kang, K. Matsumoto, M. Tohda, et al., Pteropodine and isopteropodine positively modulate the function of rat muscarinic M1 and 5-HT2 receptors expressed in Xenopus oocyte, Eur. J. Pharmacol. 444(2002) 39-45;
      (f) P.R. Sebahar, R.M. Williams, The asymmetric total synthesis of (+)- and (-)-spirotryprostatin B, J. Am. Chem. Soc. 122(2000) 5666-5667.

    14. [14]

      Kumari G., Nutan , Modi M.. Rhodium(Ⅱ) acetate-catalyzed stereoselective synthesis, SAR and anti-HIV activity of novel oxindoles bearing cyclopropane ring[J]. Eur. J. Med. Chem., 2011,46:1181-1188.

    15. [15]

      Vintonyak V.V., Warburg K., Kruse H.. Identification of thiazolidinones spirofused to indolin-2-ones as potent and selective inhibitors of the mycobacterium tuberculosis protein tyrosine phosphatase B[J]. Angew. Chem. Int. Ed. Engl., 2010,49:5902-5905.

    16. [16]

      Yu B., Yu D.Q., Liu H.M.. Spirooxindoles:promising scaffolds for anticancer agents[J]. Eur. J. Med. Chem., 2015,97:673-698.

    17. [17]

      Tian Y., Nam S., Liu L.. Spirooxindole derivative SOID-8 induces apoptosis associated with inhibition of JAK2/STAT3 signaling in melanoma cells[J]. PLoS ONE, 2012(7)e49306.

    18. [18]

      (a) Y. Li, H. Chen, C. Shi, et al., Efficient one-pot synthesis of spirooxindole derivatives catalyzed by L-proline in aqueous medium, J. Comb. Chem. 12(2010) 231-237;
      (b) L.M. Wang, N. Jiao, J. Qiu, et al., Sodium stearate-catalyzed multicomponent reactions for efficient synthesis of spirooxindoles in aqueous micellar media, Tetrahedron 66(2010) 339-343;
      (c) M. Dabiri, M. Bahramnejad, M. Baghbanzadeh, Ammonium salt catalyzed multicomponent transformation:simple route to functionalized spirochromenes and spiroacridines, Tetrahedron 65(2009) 9443-9447;
      (d) S. Gao, C.H. Tsai, C. Tseng, et al., Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4H-chromene and N-arylquinoline derivatives in aqueous media, Tetrahedron 64(2008) 9143-9149;
      (e) Y.M. Litvinov, V.Y. Mortikov, A.M. Shestopalov, Versatile three-component procedure for combinatorial synthesis of 2-aminospiro[(3'H)-indol3',4-(4H)-pyrans], J. Comb. Chem. 10(2008) 741-745;
      (f) G. Shanthi, G. Subbulakshmi, P.T. Perumal, A new InCl3-catalyzed facile and efficient method for the synthesis of spirooxindoles under conventional and solvent-free microwave conditions, Tetrahedron 63(2007) 2057-2063;
      (g) R.G. Redkin, L.A. Shemchuk, V.P. Chernykh, et al., Synthesis and molecular structure of spirocyclic 2-oxindole derivatives of 2-amino-4H-pyran condensed with the pyrazolic nucleus, Tetrahedron 63(2007) 11444-11450;
      (h) Y. Caibo, G. Xuepin, W. Shenghua, et al., Green catalyzed synthesis method of spirooxindole derivative by using basic ionic liquid catalyst, CN 103833764 A 20140604.

    19. [19]

      Wu C., Shen R., Chen J.. An efficient method for multicomponent synthesis of spiro[J]. Bull. Korean Chem. Soc., 2013,34:2431-2435.

    20. [20]

      Rai P., Srivastava M., Singh J.. Chitosan/ionic liquid forms a renewable and reusable catalyst system used for the synthesis of highly functionalized spiro derivatives[J]. New J. Chem., 2014,38:3181-3186.

    21. [21]

      Guo R.Y., An Z.M., Mo L.P.. Meglumine promoted one-pot, four-component synthesis of pyranopyrazole derivatives[J]. Tetrahedron, 2013,69:9931-9938.

    22. [22]

      Zou Y., Hu Y., Liu H.. Rapid and efficient ultrasound-assisted method for the combinatorial synthesis of spiro[J]. ACS Comb. Sci., 2012,14:38-43.

    23. [23]

      Elinson M.N., Dorofeev A.S., Miloserdov F.M.. Electrocatalytic multicomponent assembling of isatins, 3-methyl-2-pyrazolin-5-ones and malononitrile:facile and convenient way to functionalized spirocyclic[J]. Mol. Divers., 2009,13:47-52.

    24. [24]

      (a) B.M. Rao, G.N. Reddy, T.V. Reddy, et al., Carbon-SO3H:a novel and recyclable solid acid catalyst for the synthesis of spiro[4H-pyran-3,30-oxindoles], Tetrahedron Lett. 54(2013) 2466-2471;
      (b) L.A. Shemchuk, V.P. Chernykh, R.G. Redkin, Synthesis of fused 2'-amino-3'-Rspiro-[indole-3,4'-pyran]-2(1H)-ones, Russ. J. Org. Chem. 44(2008) 1789-1794.

    25. [25]

      Zhao L., Zhou B., Li Y.. An efficient one-pot three-component reaction for synthesis of spirooxindole derivatives in water media under catalyst-free condition[J]. Heteroat. Chem., 2011,22:673-677.

    26. [26]

      Elinson M.N., Ilovaisky A.I., Merkulova V.M.. Non-catalytic thermal multicomponent assembling of isatin, cyclic CH-acids and malononitrile:an efficient approach to spirooxindole scaffold[J]. Mendeleev Commun., 2012,22:143-144.

    27. [27]

      Safaei H.R., Shekouhy M., Rahmanpur S.. Glycerol as a biodegradable and reusable promoting medium for the catalyst-free one-pot three component synthesis of 4H-pyrans[J]. Green Chem., 2012,14:1696-1704.

    28. [28]

      Ponpandian T., Muthusubramanian S.. One-pot, catalyst-free synthesis of spirooxindole and 4H-pyran derivatives[J]. Synth. Commun., 2014,44:868-874.

    29. [29]

      Srivastava M., Rai P., Singh J.. Bmim(OH)/chitosan/C2H5OH synergy:grinding induced, a new route for the synthesis of spirooxindole and its derivatives[J]. RSC Adv., 2014,4:30592-30597.

    30. [30]

      Riyaz S., Indrasena A., Naidu A.. Novel and thermally stable ionic liquid (TBA acetate) for domino reaction:synthesis of spirooxindoles via new mechanistic way,[J]. Indian J. Chem., 2014(B53B):1442-1447.

    31. [31]

      Satasia S.P., Kalaria P.N., Avalani J.R.. An efficient approach for the synthesis of spirooxindole derivatives catalyzed by novel sulfated choline based heteropolyanion at room temperature[J]. Tetrahedron, 2014,70:5763-5767.

    32. [32]

      Shaterian H.R., Arman M., Rigi F.. Domino knoevenagel condensation, Michael addition, and cyclization using ionic liquid, 2-hydroxyethylammonium formate, as a recoverable catalyst[J]. J. Mol. Liq., 2011,158:145-150.

    33. [33]

      Hasaninejada A., Golzara N., Beyrati M.. Silica-bonded 5-n-propyl-octahydro-pyrimido[1, 2-a] azepinium chloride (SB-DBU)Cl as a highly efficient, heterogeneous and recyclable silica-supported ionic liquid catalyst for the synthesis of benzo[b]pyran, bis(benzo[b]pyran) and spiro-pyran derivatives[J]. J. Mol. Catal., A Chem., 2013,372:137-150.

    34. [34]

      Thakur A., Tripathi M., Rajesh U.C.. Ethylenediammonium diformate (EDDF) in PEG600:an efficient ambiphilic novel catalytic system for the one-pot synthesis of 4H-pyrans via knoevenagel condensation[J]. RSC. Adv., 2013,3:18142-18148.

    35. [35]

      Rad-Moghadam K., Youseftabar-Miri L.. Ambient synthesis of spiro[4H-pyranoxindole] derivatives under[BMIm]BF4 catalysis[J]. Tetrahedron, 2011,67:5693-5699.

    36. [36]

      Azizi N., Dezfooli S., Hashemi M.M.. Greener synthesis of spirooxindole in deep eutectic solvent[J]. J. Mol. Liq., 2014,194:62-67.

    37. [37]

      (a) Y.B. Wagh, Y.A. Tayade, S.A. Padvi, et al., A cesium fluoride promoted efficient and rapid multicomponent synthesis of functionalized 2 amino-3-cyano-4Hpyran and spirooxindole derivatives, Chin. Chem. Lett. 26(2015) (2015) 1273-1277;
      (b) Y.A. Tayade, S.A. Padvi, Y.B. Wagh, et al., β-Cyclodextrin as a supramolecular catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole and spiro[indoline-3,4'-pyrano[2,3-c]pyrazole] in aqueous medium, Tetrahedron Lett. 56(2015) 2441-2447;
      (c) Y.A. Tayade, D.R. Patil, Y.B. Wagh, et al., An efficient synthesis of 3-indolyl-3 hydroxy oxindoles and 3,3-di(indolyl)indolin-2-ones catalyzed by sulfonated β-CD as a supramolecular catalyst in water, Tetrahedron Lett. 56(2015) 666-673;
      (d) A.D. Jangale, P.K. Kumavat, Y.B. Wagh, et al., Green process development for the synthesis of aliphatic symmetrical N,N'-disubstituted thiourea derivatives in aqueous medium, Synth. Commun. 45(2015) 236-244;
      (e) D.R. Patil, Y.B. Wagh, P.G. Ingole, et al., β-Cyclodextrin-mediated highly efficient[2+3] cycloaddition reactions for the synthesis of 5-substituted 1-H tetrazoles, New J. Chem. 37(2013) 3261-3266;
      (f) D.R. Patil, D.S. Dalal, Biomimetic approach for the synthesis of N,N' diarylsubstituted formamidines catalyzed by β-cyclodextrin in water, Chin. Chem. Lett. 23(2012) 1125-1128.

    38. [38]

      Ranu B.C., Banerjee S.. Ionic liquid as catalyst and reaction medium. the dramatic influence of a task-specific ionic liquid, [bmim]OH, in michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles[J]. Org. Lett., 2005,7:3049-3052.

  • 加载中
    1. [1]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    2. [2]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    3. [3]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    6. [6]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    7. [7]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    8. [8]

      Rui ChengTingting ZhangXin HuangJian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763

    9. [9]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    10. [10]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    11. [11]

      Wei SunAnjing LiaoLi LeiXu TangYa WangJian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855

    12. [12]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    13. [13]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    14. [14]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    15. [15]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    16. [16]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    17. [17]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    18. [18]

      Guiyang ZhengXuelian KangHaoran YeWei FanChristian SonneSu Shiung LamRock Keey LiewChanglei XiaYang ShiShengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817

    19. [19]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    20. [20]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

Metrics
  • PDF Downloads(5)
  • Abstract views(619)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return