Citation: Mishaal Mohammed Ahmed. Fabrication and characterization of gold nano particles for DNA biosensor applications[J]. Chinese Chemical Letters, ;2016, 27(5): 801-806. doi: 10.1016/j.cclet.2016.01.013 shu

Fabrication and characterization of gold nano particles for DNA biosensor applications

  • Corresponding author: Mishaal Mohammed Ahmed, mishal78_2010@yahoo.com
  • Received Date: 5 September 2015
    Revised Date: 27 November 2015
    Accepted Date: 5 January 2016
    Available Online: 14 May 2016

Figures(8)

  • This research involves the preparation of a biosensor using silicon oxide for biomedical applications, and its effective use for the detection of target DNA hybridization. An electrochemical DNA biosensor was successfully fabricated by using (3-aminopropyl) tri-ethoxysilane (APTES) as a linker molecule combined with gold nanoparticles (GNPs) on a thermally oxidized SiO2 thin film. The size of the GNPs was calculated by utilizing UV-vis data with an average calculated particle size within the range of 30±5 nm, and characterization by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The GNP-modified SiO2 thin films were electrically characterized through the measurement of capacitance, permittivity and conductivity using a low-cost dielectric analyzer. The capacitance, permittivity and conductivity profiles of the fabricated sensor clearly differentiated DNA immobilization and hybridization.
  • 加载中
    1. [1]

      Imre D.. Titanium dioxide and gold nanoparticle for environmental and biological application[J]. Ann. Fac. Eng. Hunedoara, 2011,1:161-166.

    2. [2]

      Boddu S.R., Gutti V.R., Ghosh T.K., Tompson R.V., Loyalka S.K.. Gold, silver, and palladium nanoparticle/nano-agglomerate generation, collection, and characterization[J]. J. Nanopart. Res., 2011,13:6591-6601.

    3. [3]

      Gayathri S.B., Kamaraj P.. Development of electrochemical DNA biosensors-a review[J]. Chem. Sci. Trans., 2015,4:303-311.

    4. [4]

      Ali M.E., Kashif M., Uddin K.. Species authentication methods in foods and feeds:the present, past, and future of halal forensics[J]. Food Anal. Methods, 2012,5:935-955.

    5. [5]

      Hood L., Galas D.. The digital code of DNA[J]. Nature, 2003,421:444-448.

    6. [6]

      Heller M.J.. DNA microarray technology:devices, systems, and applications[J]. Annu. Rev. Biomed. Eng., 2002,4:129-153.

    7. [7]

      Zinchenko A., Taki Y., Sergeyev V.G., Murata S.. DNA-assisted solubilization of carbon nanotubes and construction of DNA-MWCNT cross-linked hybrid hydrogels[J]. Nanomaterials, 2015,5:270-283.

    8. [8]

      Ali M.E., Hashim U., Mustafa S., Che Man Y.B., Adam T., Humayun Q.. Nanobiosensor for the detection and quantification of pork adulteration in meatball formulation[J]. J. Exp. Nanosci., 2014,9:152-160.

    9. [9]

      Yoshioka K., Kakumu S., Wakita T.. Detection of hepatitis C virus by polymerase chain reaction and response to interferon-α therapy:relationship to genotypes of hepatitis C virus[J]. Hepatology, 1992,16:293-299.

    10. [10]

      Osborn A.M., Moore E.R.B., Timmis K.N.. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics[J]. Environ. Microbiol., 2000,2:39-50.

    11. [11]

      Farmer P.B., Brown K., Tompkins E.. DNA adducts:mass spectrometry methods and future prospects[J]. Toxicol. Appl. Pharmacol., 2005,207:293-301.

    12. [12]

      Byun K.M., Kim N.H., Ko Y.H., Yu J.S.. Enhanced surface plasmon resonance detection of DNA hybridization based on ZnO nanorod arrays[J]. Sens. Actuators, B:Chem., 2011,155:375-379.

    13. [13]

      Zhang W., Yang T., Huang D.M., Jiao K.. Electrochemical sensing of DNA immobilization and hybridization based on carbon nanotubes/nano Zinc oxide/chitosan composite film[J]. Chin. Chem. Lett., 2008,19:589-591.

    14. [14]

      Selinger D.W., Cheung K.J., Mei R.. RNA expression analysis using a 30 base pair resolution Escherichia coli genome array[J]. Nat. Biotechnol., 2000,18:1262-1268.

    15. [15]

      Hsiao C.Y., Lin C.H., Hung C.H.. Novel poly-silicon nanowire field effect transistor for biosensing application[J]. Biosens. Bioelectron., 2009,24:1223-1229.

    16. [16]

      V. Kattumuri, Gold Nanoparticles for Biomedical Applications:Synthesis, Characterization, In Vitro and In Vivo Studies, University of Missouri-Columbia, Columbia, MO, 2006.

    17. [17]

      Donnelly T., Krishnamurthy S., Carney K., McEvoy N., Lunney J.. Pulsed laser deposition of nanoparticle films of Au[J]. Appl. Surf. Sci., 2007,254:1303-1306.

    18. [18]

      Wu C.L., Qiao X.L., Chen J.G.. A novel chemical route to prepare ZnO nanoparticles[J]. Mater. Lett., 2006,60:1828-1832.

    19. [19]

      Yang S.S., Jang Y.H., Kim C.H.. A flame metal combustion method for production of nanoparticles[J]. Powder Technol., 2010,197:170-176.

    20. [20]

      Szymańska-Chargot M., Gruszecka A., Smolira A., Cytawa J., Michalak L.. Massspectrometric investigations of the synthesis of silver nanoparticles via electrolysis[J]. Vacuum, 2008,82:1088-1093.

    21. [21]

      Lim P.Y., Liu R.S., She P.L., Hung C.F., Shih H.C.. Synthesis of Ag nanospheres particles in ethylene glycol by electrochemical-assisted polyol process[J]. Chem. Phys. Lett., 2006,420:304-308.

    22. [22]

      Rosemary M.J., Pradeep T.. Solvothermal synthesis of silver nanoparticles from thiolates[J]. J. Colloid Interface Sci., 2003,268:81-84.

    23. [23]

      Jia H.Y., Zeng J.B., Song W., An J., Zhao B.. Preparation of silver nanoparticles by photo-reduction for surface-enhanced Raman scattering[J]. Thin Solid Films, 2006,496:281-287.

    24. [24]

      Liu Y.C., Lin L.H., Chiu W.H.. Size-controlled synthesis of gold nanoparticles from bulk gold substrates by sonoelectrochemical methods[J]. J. Phys. Chem. B, 2004,108:19237-19240.

    25. [25]

      Gu J.L., Fan W., Shimojima A., Okubo T.. Microwave-induced synthesis of highly dispersed gold nanoparticles within the pore channels of mesoporous silica[J]. J. Solid State Chem., 2008,181:957-963.

    26. [26]

      Huang H.Z., Yang X.R.. Synthesis of polysaccharide-stabilized gold and silver nanoparticles:a green method[J]. Carbohydr. Res., 2004,339:2627-2631.

    27. [27]

      Eerikäinen H., Kauppinen E.I.. Preparation of polymeric nanoparticles containing corticosteroid by A novel aerosol flow reactor method[J]. Int. J. Pharm., 2003,263:69-83.

    28. [28]

      Itoh Y., Abdullah M., Okuyama K.. Direct preparation of nonagglomerated indium tin oxide nanoparticles using various spray pyrolysis methods[J]. J. Mater. Res., 2004,19:1077-1086.

    29. [29]

      Duocastella M., Fernández-Pradas J.M., Domínguez J., Serra P., Morenza J.L.. Printing biological solutions through laser-induced forward transfer[J]. Appl. Phys. A, 2008,93:941-945.

    30. [30]

      McGilvray K.L., Decan M.R., Wang D.S., Scaiano J.C.. Facile photochemical synthesis of unprotected aqueous gold nanoparticles[J]. J. Am. Chem. Soc., 2006,128:15980-15981.

    31. [31]

      Tabrizi N.S., Ullmann M., Vons V.A., Lafont U., Schmidt-Ott A.. Generation of nanoparticles by spark discharge[J]. J. Nanopart. Res., 2009,11:315-332.

    32. [32]

      Matsumoto A., Sato N., Kataoka K., Miyahara Y.. Noninvasive sialic acid detection at cell membrane by using phenyl boronic acid modified self-assembled monolayer gold electrode[J]. J. Am. Chem. Soc., 2009,131:12022-12023.

    33. [33]

      Rahman M.M., Li X.B., Lopa N.S., Ahn S.J., Lee J.-J.. Electrochemical DNA hybridization sensors based on conducting polymers[J]. Sensors, 2015,15:3801-3829.

    34. [34]

      Qu J.L., Wu L.D., Liu H., Fu X.C., Song Y.. A novel electrochemical biosensor based on DNA for rapid and selective detection of cadmium[J]. Int. J. Electrochem. Sci., 2015,10:4020-4028.

    35. [35]

      Abad J.M., Mertens S.F.L., Pita M., Fernández V.M., Schiffrin D.J.. Functionalization of thioctic acid-capped gold nanoparticles for specific immobilization of histidine-tagged proteins[J]. J. Am. Chem. Soc., 2005,127:5689-5694.

    36. [36]

      Phadtare S., Vinod V.P., Mukhopadhyay K., Kumar A., Rao M.. Immobilization and biocatalytic activity of fungal protease on gold nanoparticle-loaded Zeolite microspheres[J]. Biotechnol. Bioeng., 2004,85:629-637.

    37. [37]

      Saha K., Agasti S.S., Kim C., Li X.N., Rotello V.M.. Gold nanoparticles in chemical and biological sensing[J]. Chem. Rev., 2012,112:2739-2779.

    38. [38]

      Doria G., Conde J., Veigas B., Giestas L., Almeida C.. Noble metal nanoparticles for biosensing applications[J]. Sensors, 2012,12:1657-1687.

    39. [39]

      Zhang D., Huarng M.C., Alocilja E.C.. A multiplex nanoparticle-based bio-barcode DNA sensor for the simultaneous detection of multiple pathogens[J]. Biosens. Bioelectron., 2010,26:1736-1742.

    40. [40]

      Drummond T.G., Hill M.G., Barton J.K.. Electrochemical DNA sensors[J]. Nat. Biotechnol., 2003,21:1192-1199.

    41. [41]

      Wang J.. Portable electrochemical systems[J]. TrAC Trends Anal. Chem., 2002,21:226-232.

    42. [42]

      Weng J., Zhang J.F., Li H.. Label-free DNA sensor by boron-doped diamond electrode using an AC impedimetric approach[J]. Anal. Chem., 2008,80:7075-7083.

    43. [43]

      Goluch E.D., Nam J.M., Georganopoulou D.G.. A bio-barcode assay for onchip attomolar-sensitivity protein detection[J]. Lab Chip, 2006,6:1293-1299.

    44. [44]

      Nam J.M., Thaxton C.S., Mirkin C.A.. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins[J]. Science, 2003,301:1884-1886.

    45. [45]

      Nam J.M., Stoeva S.I., Mirkin C.A.. Bio-bar-code-based DNA detection with PCRlike sensitivity[J]. J. Am. Chem. Soc., 2004,126:5932-5933.

    46. [46]

      Hou X.M., Wang L.X., He G.F., Hao J.C.. Synthesis, optical and electrochemical properties of ZnO nanorod hybrids loaded with high-density gold nanoparticles[J]. CrystEngComm, 2012,14:5158-5162.

    47. [47]

      Ali M.E., Hashim U., Mustafa S.. Nanoparticle sensor for label free detection of swine DNA in mixed biological samples[J]. Nanotechnology, 2011,22:195503-195510.

    48. [48]

      Haiss W., Thanh N.T.K., Aveyard J., Fernig D.G.. Determination of size and concentration of gold nanoparticles from UV-vis spectra[J]. Anal. Chem., 2007,79:4215-4221.

    49. [49]

      Canavar P.E., Ekşin E., Erdem A.. Electrochemical monitoring of the interaction between mitomycin C and DNA at chitosan-carbon nanotube composite modified electrodes[J]. Turk. J. Chem., 2015,39:1-12.

    50. [50]

      Vetrone S.A., Huarng M.C., Alocilja E.C.. Detection of non-PCR amplified S. enteritidis genomic DNA from food matrices using a gold-nanoparticle DNA biosensor:a proof-of-concept study[J]. Sensors, 2012,12:10487-10499.

    51. [51]

      Reyes P.I., Zhang Z., Chen H.H.. A ZnO nanostructure-based quartz crystal microbalance device for biochemical sensing[J]. IEEE Sens. J., 2009,9:1302-1307.

    52. [52]

      Das M., Sumana G., Nagarajan R., Malhotra B.D.. Zirconia based nucleic acid sensor for Mycobacterium tuberculosis detection[J]. Appl. Phys. Lett., 2010,96:133703-133712.

  • 加载中
    1. [1]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    2. [2]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    3. [3]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    4. [4]

      Yiyang ShenZhen ZhangRuyi LiangTongbo Wu . Unraveling the interplay of DNAzyme and interfacial factors for enhanced biosensing. Chinese Chemical Letters, 2024, 35(12): 109638-. doi: 10.1016/j.cclet.2024.109638

    5. [5]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    6. [6]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    7. [7]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    8. [8]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    9. [9]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    10. [10]

      Chuang LIULichao SUNQingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406

    11. [11]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2024.100193

    12. [12]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    13. [13]

      Kai AnQinglong QiaoLoveleshSyed Ali Abbas AbediXiaogang LiuZhaochao Xu . "Superimposed" spectral characteristics of fluorophores arising from cross-conjugation hybridization. Chinese Chemical Letters, 2025, 36(1): 109786-. doi: 10.1016/j.cclet.2024.109786

    14. [14]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    15. [15]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    16. [16]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    17. [17]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    18. [18]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    19. [19]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    20. [20]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

Metrics
  • PDF Downloads(3)
  • Abstract views(686)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return