Turn-on fluorescence probe for selective detection of Hg(Ⅱ) by calixpyrrole hydrazide reduced silver nanoparticle: Application to real water sample
- Corresponding author: Bhatt Keyur D. , drkdbhatt@outlook.com
Citation: Bhatt Keyur D. , Vyas Disha J. , Makwana Bharat A. , Darjee Savan M. , Jain Vinod K. , Shah Hemangini. Turn-on fluorescence probe for selective detection of Hg(Ⅱ) by calixpyrrole hydrazide reduced silver nanoparticle: Application to real water sample[J]. Chinese Chemical Letters, ;2016, 27(5): 731-737. doi: 10.1016/j.cclet.2016.01.012
Omidfar K., Khorsand F., Azizi M.D.. New analytical applications of gold nanoparticles as label in antibody based sensors[J]. Biosens. Bioelectron., 2013,43:336-347.
Burda C., Chen X.B., Narayanan R., El-Sayed M.A.. Chemistry and properties of nanocrystals of different shapes[J]. Chem. Rev., 2005,105:1025-1102.
Lin Y.H., Chen C.E., Wang C.Y.. Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag-catechol interaction[J]. Chem. Commun., 2011,47:1181-1183.
Wang Y., Yang F., Yang X.R.. Colorimetric detection of mercury(Ⅱ) ion using unmodified silver nanoparticles and mercury-specific oligonucleotides[J]. ACS Appl. Mater. Interfaces, 2010,2:339-342.
He S., Li D., Zhu C.. Design of a gold nanoprobe for rapid and portable mercury detection with the naked eye[J]. Chem. Commun., 2008,40:4885-4887.
Wang G.L., Zhu X.Y., Jiao H.J., Dong Y.M., Li Z.J.. Ultrasensitive and dual functional colorimetric sensors for mercury(Ⅱ) ions and hydrogen peroxide based on catalytic reduction property of silver nanoparticles[J]. Biosens. Bioelectron., 2012,31:337-342.
Shang L., Dong S.J.. Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(Ⅱ)[J]. J. Mater. Chem., 2008,18:4636-4640.
Zhang Y.W., Li H.L., Sun X.P.. Silver nanoparticles as a fluorescent sensing platform for nucleic acid detection[J]. Chin. J. Anal. Chem., 2011,39:998-1002.
Shang L., Dong S.J.. Sensitive detection of cysteine based on fluorescent silver clusters[J]. Biosens. Bioelectron., 2009,24:1569-1573.
Roy B., Bairi P., Nandi A.K.. Selective colorimetric sensing of mercury(Ⅱ) using turn off-turn on mechanism from riboflavin stabilized silver nanoparticles in aqueous medium[J]. Analyst, 2011,136:3605-3607.
Quang D.T., Kim J.S.. Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens[J]. Chem. Rev., 2010,110:6280-6301.
Dessingou J., Tabbasum K., Mitra A., Hinge V.K., Rao C.P.. Lower rim 1,3-di{4-antipyrine}amide conjugate of calix[J]. J. Org. Chem., 2012,77:1406-1413.
Malm O.. Gold mining as a source of mercury exposure in the Brazilian Amazon[J]. Environ. Res., 1998,77:73-78.
Benoit J.M., Fitzgerald W.F., Damman A.W.H.. The biogeochemistry of an ombrotrophic bog:evaluation of use as an archive of atmospheric mercury deposition[J]. Environ. Res., 1998,78:118-133.
Knecht M.R., Sethi M.. Bio-inspired colorimetric detection of Hg2+ and Pb2+ heavy metal ions using Au nanoparticles[J]. Anal. Bioanal. Chem., 2009,394:33-46.
Karunasagar D., Arunachalam J., Gangadharan S.. Development of a 'collect and punch' cold vapour inductively coupled plasma mass spectrometric method for the direct determination of mercury at nanograms per litre levels[J]. J. Anal. At. Spectrom., 1998,13:679-682.
Anthemidis A.N., Zachariadis G.A., Michos C.E., Stratis J.A.. Time-based on-line preconcentration cold vapour generation procedure for ultra-trace mercury determination with inductively coupled plasma atomic emission spectrometry[J]. Anal. Bioanal. Chem., 2004,379:764-796.
Harrington C.F., Merson S.A., D'Silva T.M.. Method to reduce the memory effect of mercury in the analysis of fish tissue using inductively coupled plasma mass spectrometry[J]. Anal. Chim. Acta, 2004,505:247-254.
Marczenko Z.. Separation and Spectrophotometric Determination of Elements, John Wiley and Sons[J]. New York, NY, 1986.
Yu J.C., Lo J.M., Wai C.M.. Extraction of gold and mercury from sea water with bismuth diethyldithiocarbamate prior to neutron activation-γ-spectrometry[J]. Anal. Chim. Acta, 1983,154:307-312.
Ugo P., Moretto L.M., Bertoncello P., Wang J.. Determination of trace mercury in salt water at screen-printed electrodes modified with sumichelate Q10R[J]. Electroanalysis, 1998,10:1017-1021.
Bennun L., Gomez J.. Determination of mercury by total-reflection X-ray fluorescence using amalgamation with gold[J]. Spectrochim. Acta, B At. Spectrosc., 1997,52:1195-1200.
Burrini C., Cagnini A.. Determination of mercury in urine by ET-AAS using complexation with dithizone and extraction with cyclohexane[J]. Talanta, 1997,44:1219-1223.
Shafawi A., Ebdon L., Foulkes M., Stockwell P., Corns W.. Determination of total mercury in hydrocarbons and natural gas condensate by atomic fluorescence spectrometry[J]. Analyst, 1999,124:185-189.
Cizdziel J.V., Gerstenberger S.. Determination of total mercury in human hair and animal fur by combustion atomic absorption spectrometry[J]. Talanta, 2004,64:918-921.
Kopysc E., Pyrzynska K., Garbos S., Bulska E.. Determination of mercury by coldvapor atomic absorption spectrometry with preconcentration on a gold-trap[J]. Anal. Sci., 2000,16:1309-1312.
Yamini Y., Alizadeh N., Shamsipur M.. Solid phase extraction and determination of ultra trace amounts of mercury(Ⅱ) using octadecyl silica membrane disks modified by hexathia-18-crown-6-tetraone and cold vapour atomic absorption spectrometry[J]. Anal. Chim. Acta, 1997,355:69-74.
Bühlmann P., Pretsch E., Bakker E.. Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors[J]. Chem. Rev., 1998:1593-1688.
Zhang H., Wang Q.L., Jiang Y.B.. 8-Methoxyquinoline based turn-on metal fluoroionophores[J]. Tetrahedron Lett., 2007,48:3959-3962.
Wu D.Y., Huang W., Lin Z.H.. Highly sensitive multiresponsive chemosensor for selective detection of Hg2+ in natural water and different monitoring environments[J]. Inorg. Chem., 2008,47:7190-7201.
Martínez R., Zapata F., Caballero A.. 2-Aza-1,3-butadiene derivatives featuring an anthracene or pyrene unit:highly selective colorimetric and fluorescent signaling of Cu2+cation[J]. Org. Lett., 2006,8:3235-3238.
Rurack K., Kollmannsberger M., Resch-Genger U., Daub J.. A selective and sensitive fluoroionophore for HgⅡ, AgⅠ, and CuⅡ with virtually decoupled fluorophore and receptor units[J]. J. Am. Chem. Soc., 2000,122:968-969.
Gil-Ramírez G., Benet-Buchholz J., Escudero-Adán E.C., Ballester P.. Solid-state self-assembly of a calix[J]. J. Am. Chem. Soc., 2007,129:3820-3821.
Bhatt K.D., Vyas D.J., Makwana B.A., Darjee S.M., Jain V.K.. Highly stable water dispersible calix[J]. Spectrochim. Acta, A:Mol. Biomol. Spectrosc., 2014,121:94-100.
Nickel U., zu Castell A., Pöppl K., Schneider S.. A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced raman spectroscopy[J]. Langmuir, 2000,16:9087-9091.
Chen M., Feng Y.G., Wang X.. Silver nanoparticles capped by oleylamine:formation, growth, and self-organization[J]. Langmuir, 2007,23:5296-5304.
Newman J.D.S., Blanchard G.J.. Formation of gold nanoparticles using amine reducing agents[J]. Langmuir, 2006,22:5882-5887.
Bhalla V., Tejpal R., Kumar M., Sethi A.. Terphenyl derivatives as "turn on" fluorescent sensors for mercury[J]. Inorg. Chem., 2009,48:11677-11684.
Morris T., Copeland H., McLinden E., Wilson S., Szulczewski G.. The effects of mercury adsorption on the optical response of size-selected gold and silver nanoparticles[J]. Langmuir, 2002,18:7261-7264.
Radhakumary C., Sreenivasan K.. Gold nanoparticles generated through "green route" bind Hg2+ with a concomitant blue shift in plasmon absorption peak[J]. Analyst, 2011,136:2959-2962.
Vasimalai N., Sheeba G., John S.A.. Ultrasensitive fluorescence-quenched chemosensor for Hg(Ⅱ) in aqueous solution based on mercaptothiadiazole capped silver nanoparticles[J]. J. Hazard. Mater. 213-, 2012,214:193-199.
Liu H., Hao X., Duan C.H.. Al3+-induced far-red fluorescence enhancement of conjugated polymer nanoparticles and its application in live cell imaging[J]. Nanoscale, 2013,5:9340-9347.
Xu Y.F., Liu Y.H., Qian X.H.. Novel cyanine dyes as fluorescent pH sensors:PET[J]. ICT mechanism or resonance effect? J. Photochem. Photobiol., A Chem., 2007,190:1-8.
Shuangying Li , Qingxiang Zhou , Zhi Li , Menghua Liu , Yanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693
Guorong Li , Yijing Wu , Chao Zhong , Yixin Yang , Zian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
Hailang Deng , Abebe Reda Woldu , Abdul Qayum , Zanling Huang , Weiwei Zhu , Xiang Peng , Paul K. Chu , Liangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Ya-Wen Zhang , Ming-Ming Gan , Li-Ying Sun , Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
Jiao Chen , Zihan Zhang , Guojin Sun , Yudi Cheng , Aihua Wu , Zefan Wang , Wenwen Jiang , Fulin Chen , Xiuying Xie , Jianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
Wenya Jiang , Jianyu Wei , Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Zhuwen Wei , Jiayan Chen , Congzhen Xie , Yang Chen , Shifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677
Fangwen Peng , Zhen Luo , Yingjin Ma , Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273
Jiayao Li , Xinru Peng , Shiwei Yin , Changwei Wang , Yirong Mo . Metastability of π-π stacking between the closed-shell ions of like charges. Chinese Journal of Structural Chemistry, 2024, 43(5): 100213-100213. doi: 10.1016/j.cjsc.2023.100213
A-Yang Wang , Sheng-Hua Zhou , Mao-Yin Ran , Xin-Tao Wu , Hua Lin , Qi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377
Jie Zhou , Chuanxiang Zhang , Changchun Hu , Shuo Li , Yuan Liu , Zhu Chen , Song Li , Hui Chen , Rokayya Sami , Yan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561
Jiaxuan Wang , Tonghe Liu , Bingxiang Wang , Ziwei Li , Yuzhong Niu , Hou Chen , Ying Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900
Feihu Wu , Gengwen Chen , Kaitao Lai , Shiqing Zhang , Yingchao Liu , Ruijian Luo , Xiaocong Wang , Pinzhi Cao , Yi Ye , Jiarong Lian , Junle Qu , Zhigang Yang , Xiaojun Peng . Non-specific/specific SERS spectra concatenation for precise bacteria classifications with few samples using a residual neural network. Chinese Chemical Letters, 2025, 36(1): 109884-. doi: 10.1016/j.cclet.2024.109884