Citation: Bhatt Keyur D. , Vyas Disha J. , Makwana Bharat A. , Darjee Savan M. , Jain Vinod K. , Shah Hemangini. Turn-on fluorescence probe for selective detection of Hg(Ⅱ) by calixpyrrole hydrazide reduced silver nanoparticle: Application to real water sample[J]. Chinese Chemical Letters, ;2016, 27(5): 731-737. doi: 10.1016/j.cclet.2016.01.012 shu

Turn-on fluorescence probe for selective detection of Hg(Ⅱ) by calixpyrrole hydrazide reduced silver nanoparticle: Application to real water sample

  • Corresponding author: Bhatt Keyur D. , drkdbhatt@outlook.com
  • Received Date: 30 March 2015
    Revised Date: 7 September 2015
    Accepted Date: 25 December 2015
    Available Online: 21 May 2016

Figures(9)

  • A simple and quick method for the synthesis of water dispersible stable silver nanoparticles has been developed. Calix[4]pyrrole octahydrazide (CPOH), has been successfully used as a reducing as well as stabilizing agent for the synthesis of silver nanoparticles. CPOH-AgNps have been duly characterized by SPR, PSA, TEM and EDX-ray. The ability of CPOH-AgNps as selective and sensitive sensor for various ions (Pb(Ⅱ), Cd(Ⅱ), Mn(Ⅱ), Fe(Ⅲ), Ni(Ⅱ), Zn(Ⅱ), Hg(Ⅱ), Co(Ⅱ), Cu(Ⅱ)) by colorimetry and spectrofluorimetry has been explored. CPOH-AgNps were found to be selective only for Hg(Ⅱ) ions. Nanomolar concentration of Hg(Ⅱ) ions can also be determined by spectrofluorimetry by increase in fluorescence intensity. Linear range of detection of Hg(Ⅱ) ions in water was found to be from 1 nmol/L to 1 μmol/L. The method has been successfully applied for determination of Hg(Ⅱ) ions in ground water and industrial effluent waste water samples.
  • 加载中
    1. [1]

      Omidfar K., Khorsand F., Azizi M.D.. New analytical applications of gold nanoparticles as label in antibody based sensors[J]. Biosens. Bioelectron., 2013,43:336-347.

    2. [2]

      Burda C., Chen X.B., Narayanan R., El-Sayed M.A.. Chemistry and properties of nanocrystals of different shapes[J]. Chem. Rev., 2005,105:1025-1102.

    3. [3]

      Lin Y.H., Chen C.E., Wang C.Y.. Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag-catechol interaction[J]. Chem. Commun., 2011,47:1181-1183.

    4. [4]

      Wang Y., Yang F., Yang X.R.. Colorimetric detection of mercury(Ⅱ) ion using unmodified silver nanoparticles and mercury-specific oligonucleotides[J]. ACS Appl. Mater. Interfaces, 2010,2:339-342.

    5. [5]

      He S., Li D., Zhu C.. Design of a gold nanoprobe for rapid and portable mercury detection with the naked eye[J]. Chem. Commun., 2008,40:4885-4887.

    6. [6]

      Wang G.L., Zhu X.Y., Jiao H.J., Dong Y.M., Li Z.J.. Ultrasensitive and dual functional colorimetric sensors for mercury(Ⅱ) ions and hydrogen peroxide based on catalytic reduction property of silver nanoparticles[J]. Biosens. Bioelectron., 2012,31:337-342.

    7. [7]

      Shang L., Dong S.J.. Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(Ⅱ)[J]. J. Mater. Chem., 2008,18:4636-4640.

    8. [8]

      Zhang Y.W., Li H.L., Sun X.P.. Silver nanoparticles as a fluorescent sensing platform for nucleic acid detection[J]. Chin. J. Anal. Chem., 2011,39:998-1002.

    9. [9]

      Shang L., Dong S.J.. Sensitive detection of cysteine based on fluorescent silver clusters[J]. Biosens. Bioelectron., 2009,24:1569-1573.

    10. [10]

      Roy B., Bairi P., Nandi A.K.. Selective colorimetric sensing of mercury(Ⅱ) using turn off-turn on mechanism from riboflavin stabilized silver nanoparticles in aqueous medium[J]. Analyst, 2011,136:3605-3607.

    11. [11]

      Quang D.T., Kim J.S.. Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens[J]. Chem. Rev., 2010,110:6280-6301.

    12. [12]

      Dessingou J., Tabbasum K., Mitra A., Hinge V.K., Rao C.P.. Lower rim 1,3-di{4-antipyrine}amide conjugate of calix[J]. J. Org. Chem., 2012,77:1406-1413.

    13. [13]

      Malm O.. Gold mining as a source of mercury exposure in the Brazilian Amazon[J]. Environ. Res., 1998,77:73-78.

    14. [14]

      Benoit J.M., Fitzgerald W.F., Damman A.W.H.. The biogeochemistry of an ombrotrophic bog:evaluation of use as an archive of atmospheric mercury deposition[J]. Environ. Res., 1998,78:118-133.

    15. [15]

      Knecht M.R., Sethi M.. Bio-inspired colorimetric detection of Hg2+ and Pb2+ heavy metal ions using Au nanoparticles[J]. Anal. Bioanal. Chem., 2009,394:33-46.

    16. [16]

      Karunasagar D., Arunachalam J., Gangadharan S.. Development of a 'collect and punch' cold vapour inductively coupled plasma mass spectrometric method for the direct determination of mercury at nanograms per litre levels[J]. J. Anal. At. Spectrom., 1998,13:679-682.

    17. [17]

      Anthemidis A.N., Zachariadis G.A., Michos C.E., Stratis J.A.. Time-based on-line preconcentration cold vapour generation procedure for ultra-trace mercury determination with inductively coupled plasma atomic emission spectrometry[J]. Anal. Bioanal. Chem., 2004,379:764-796.

    18. [18]

      Harrington C.F., Merson S.A., D'Silva T.M.. Method to reduce the memory effect of mercury in the analysis of fish tissue using inductively coupled plasma mass spectrometry[J]. Anal. Chim. Acta, 2004,505:247-254.

    19. [19]

      Marczenko Z.. Separation and Spectrophotometric Determination of Elements, John Wiley and Sons[J]. New York, NY, 1986.

    20. [20]

      Yu J.C., Lo J.M., Wai C.M.. Extraction of gold and mercury from sea water with bismuth diethyldithiocarbamate prior to neutron activation-γ-spectrometry[J]. Anal. Chim. Acta, 1983,154:307-312.

    21. [21]

      Ugo P., Moretto L.M., Bertoncello P., Wang J.. Determination of trace mercury in salt water at screen-printed electrodes modified with sumichelate Q10R[J]. Electroanalysis, 1998,10:1017-1021.

    22. [22]

      Bennun L., Gomez J.. Determination of mercury by total-reflection X-ray fluorescence using amalgamation with gold[J]. Spectrochim. Acta, B At. Spectrosc., 1997,52:1195-1200.

    23. [23]

      Burrini C., Cagnini A.. Determination of mercury in urine by ET-AAS using complexation with dithizone and extraction with cyclohexane[J]. Talanta, 1997,44:1219-1223.

    24. [24]

      Shafawi A., Ebdon L., Foulkes M., Stockwell P., Corns W.. Determination of total mercury in hydrocarbons and natural gas condensate by atomic fluorescence spectrometry[J]. Analyst, 1999,124:185-189.

    25. [25]

      Cizdziel J.V., Gerstenberger S.. Determination of total mercury in human hair and animal fur by combustion atomic absorption spectrometry[J]. Talanta, 2004,64:918-921.

    26. [26]

      Kopysc E., Pyrzynska K., Garbos S., Bulska E.. Determination of mercury by coldvapor atomic absorption spectrometry with preconcentration on a gold-trap[J]. Anal. Sci., 2000,16:1309-1312.

    27. [27]

      Yamini Y., Alizadeh N., Shamsipur M.. Solid phase extraction and determination of ultra trace amounts of mercury(Ⅱ) using octadecyl silica membrane disks modified by hexathia-18-crown-6-tetraone and cold vapour atomic absorption spectrometry[J]. Anal. Chim. Acta, 1997,355:69-74.

    28. [28]

      Bühlmann P., Pretsch E., Bakker E.. Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors[J]. Chem. Rev., 1998:1593-1688.

    29. [29]

      Zhang H., Wang Q.L., Jiang Y.B.. 8-Methoxyquinoline based turn-on metal fluoroionophores[J]. Tetrahedron Lett., 2007,48:3959-3962.

    30. [30]

      Wu D.Y., Huang W., Lin Z.H.. Highly sensitive multiresponsive chemosensor for selective detection of Hg2+ in natural water and different monitoring environments[J]. Inorg. Chem., 2008,47:7190-7201.

    31. [31]

      Martínez R., Zapata F., Caballero A.. 2-Aza-1,3-butadiene derivatives featuring an anthracene or pyrene unit:highly selective colorimetric and fluorescent signaling of Cu2+cation[J]. Org. Lett., 2006,8:3235-3238.

    32. [32]

      Rurack K., Kollmannsberger M., Resch-Genger U., Daub J.. A selective and sensitive fluoroionophore for Hg, Ag, and Cu with virtually decoupled fluorophore and receptor units[J]. J. Am. Chem. Soc., 2000,122:968-969.

    33. [33]

      Gil-Ramírez G., Benet-Buchholz J., Escudero-Adán E.C., Ballester P.. Solid-state self-assembly of a calix[J]. J. Am. Chem. Soc., 2007,129:3820-3821.

    34. [34]

      Bhatt K.D., Vyas D.J., Makwana B.A., Darjee S.M., Jain V.K.. Highly stable water dispersible calix[J]. Spectrochim. Acta, A:Mol. Biomol. Spectrosc., 2014,121:94-100.

    35. [35]

      Nickel U., zu Castell A., Pöppl K., Schneider S.. A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced raman spectroscopy[J]. Langmuir, 2000,16:9087-9091.

    36. [36]

      Chen M., Feng Y.G., Wang X.. Silver nanoparticles capped by oleylamine:formation, growth, and self-organization[J]. Langmuir, 2007,23:5296-5304.

    37. [37]

      Newman J.D.S., Blanchard G.J.. Formation of gold nanoparticles using amine reducing agents[J]. Langmuir, 2006,22:5882-5887.

    38. [38]

      Bhalla V., Tejpal R., Kumar M., Sethi A.. Terphenyl derivatives as "turn on" fluorescent sensors for mercury[J]. Inorg. Chem., 2009,48:11677-11684.

    39. [39]

      Morris T., Copeland H., McLinden E., Wilson S., Szulczewski G.. The effects of mercury adsorption on the optical response of size-selected gold and silver nanoparticles[J]. Langmuir, 2002,18:7261-7264.

    40. [40]

      Radhakumary C., Sreenivasan K.. Gold nanoparticles generated through "green route" bind Hg2+ with a concomitant blue shift in plasmon absorption peak[J]. Analyst, 2011,136:2959-2962.

    41. [41]

      Vasimalai N., Sheeba G., John S.A.. Ultrasensitive fluorescence-quenched chemosensor for Hg(Ⅱ) in aqueous solution based on mercaptothiadiazole capped silver nanoparticles[J]. J. Hazard. Mater. 213-, 2012,214:193-199.

    42. [42]

      Liu H., Hao X., Duan C.H.. Al3+-induced far-red fluorescence enhancement of conjugated polymer nanoparticles and its application in live cell imaging[J]. Nanoscale, 2013,5:9340-9347.

    43. [43]

      Xu Y.F., Liu Y.H., Qian X.H.. Novel cyanine dyes as fluorescent pH sensors:PET[J]. ICT mechanism or resonance effect? J. Photochem. Photobiol., A Chem., 2007,190:1-8.

  • 加载中
    1. [1]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    2. [2]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    3. [3]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    4. [4]

      Hailang DengAbebe Reda WolduAbdul QayumZanling HuangWeiwei ZhuXiang PengPaul K. ChuLiangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892

    5. [5]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    6. [6]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    7. [7]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    8. [8]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    9. [9]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    10. [10]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    11. [11]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    12. [12]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    13. [13]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    14. [14]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    15. [15]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    16. [16]

      Jiayao Li Xinru Peng Shiwei Yin Changwei Wang Yirong Mo . Metastability of π-π stacking between the closed-shell ions of like charges. Chinese Journal of Structural Chemistry, 2024, 43(5): 100213-100213. doi: 10.1016/j.cjsc.2023.100213

    17. [17]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    18. [18]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    19. [19]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    20. [20]

      Feihu WuGengwen ChenKaitao LaiShiqing ZhangYingchao LiuRuijian LuoXiaocong WangPinzhi CaoYi YeJiarong LianJunle QuZhigang YangXiaojun Peng . Non-specific/specific SERS spectra concatenation for precise bacteria classifications with few samples using a residual neural network. Chinese Chemical Letters, 2025, 36(1): 109884-. doi: 10.1016/j.cclet.2024.109884

Metrics
  • PDF Downloads(1)
  • Abstract views(583)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return