Citation: Bai Qing-Long, Zhang Chun-Hua, Song Juan-Juan, Liu Jing-Hai, Feng Yan-Chun, Duan Li-Mei, Cheng Chuan-Hui. Metal-free phthalocyanine single crystal: Solvothermal synthesis and near-infrared electroluminescence[J]. Chinese Chemical Letters, ;2016, 27(5): 764-768. doi: 10.1016/j.cclet.2016.01.009 shu

Metal-free phthalocyanine single crystal: Solvothermal synthesis and near-infrared electroluminescence

  • Corresponding author: Bai Qing-Long, baiql1968@sina.com
  • Received Date: 21 July 2015
    Revised Date: 1 October 2015
    Accepted Date: 19 January 2016
    Available Online: 19 May 2016

Figures(8)

  • A metal-free purple H2Pc single crystal was synthesized by a facile solvothermal method,and its solubility and near-infrared (NIR) optical properties were also investigated due to its potential applications as a light-emitting layer for OLEDs. The H2Pc single crystal is insoluble in 1-chlorine naphthalene and other organic solvents. It gives a wide absorption in the range from 620 nm to 679 nm and a wide emission in near 922 nm. As an active light-emitting layer,H2Pc was employed to fabricate electroluminescent (EL) devices with a structure of ITO/NPB (30 nm)/Alq3:H2Pc (30 nm)/BCP (20 nm)/Alq3 (20 nm)/Al. The emission center is at 936 nm when the H2Pc doping concentration is 20 wt%. The doping concentration strongly governs the emission intensity. When doping concentration decreases from 10 wt% to 1 wt%,the emission intensity remarkably fades,and simultaneously the emission center undergoes a blue shift.
  • 加载中
    1. [1]

      Ng D.K.P., Jiang J.Z.. Sandwich-type heteroleptic phthalocyaninato and porphyrinato metal complexes[J]. Chem. Soc. Rev., 1997,26:433-442.

    2. [2]

      LeCours S.M., Guan H.W., Dimagno S.G., Wang C.H., Therien M.J.. Push-pull arylethynyl porphyrins:new chromophores that exhibit large molecular firstorder hyperpolarizabilities[J]. J. Am. Chem. Soc., 1996,118:1497-1503.

    3. [3]

      Priyadarshy S., Therien M.J., Beratan D.N.. Acetylenyl-linked,porphyrin-bridged,donor-acceptor molecules:a theoretical analysis of the molecular first hyperpolarizability in highly conjugated push-pull chromophore structures[J]. J. Am. Chem. Soc., 1996,118:1504-1510.

    4. [4]

      Toupance T., Ahsen V., Simon J.. Ionoelectronics. Cation-induced nonlinear complexation:crown ether- and poly (ethylene oxide)-substituted lutetium bisphthalocyanines[J]. J. Am. Chem. Soc., 1994,116:5352-5361.

    5. [5]

      Toupance T., Benoit H., Sarzain D., Simon J.. Ionoelectronics. Pillarlike aggregates formed via highly nonlinear complexation processes. A light-scattering study,[J]. J. Am. Chem. Soc., 1997,119:9191-9197.

    6. [6]

      De La Torre G., Vázquez P., Agulló-López F., Torres T.. Phthalocyanines and related compounds:organic targets for nonlinear optical applications[J]. J. Mater. Chem., 1998,8:1671-1683.

    7. [7]

      Moskalev P.N., Kirin I.S.. Spectrophotometric study of the sulphonated diphthalocyanine complexes of yttrium,gadolinium,and luthetium in aqueous solution[J]. Russ. J. Inorg. Chem., 1971,16:57-60.

    8. [8]

      Belarbi Z., Maitrot M., Ohta K.. Electrical properties of condensed phases of the mesogen bis(octa-octadecyloxymethylphthalocyaninato) lutetium[J]. Chem. Phys. Lett., 1988,143:400-403.

    9. [9]

      Toupance T., Bassoul P., Mineau L., Simon J.. Poly(oxyethylene)-substituted copper and lutetium phthalocyanines[J]. J. Phys. Chem., 1996,100:11704-11710.

    10. [10]

      Rosenthal I.. Phthalocyanines as photodynamic sensitizers[J]. Photochem. Photobiol., 1991,53:859-870.

    11. [11]

      Wöhrle D., Iskandar N., Graschew G.. Synthesis of positively charged phthalocyanines and their activity in the photodynamic therapy of cancer cells[J]. Photochem. Photobiol., 1990,51:351-356.

    12. [12]

      Wöhrle D., Hirth A., Bogdahn-Rai T., Schnurpfeil G., Shopova M.. Photodynamic therapy of cancer:second and third generations of photosensitizers[J]. Russ. Chem. Bull., 1998,47:807-816.

    13. [13]

      Van Slyke S.A., Chen C.H., Tang C.W.. Organic electroluminescent devices with improved stability[J]. Appl. Phys. Lett., 1996,69:2160-2162.

    14. [14]

      Zhang Z.L., Jiang X.Y., Xu S.H., Nagatomo T., Omoto O.. Stability enhancement of organic electroluminescent diode through buffer layer or rubrene doping in holetransporting laye[J]. Synth. Met., 1997,91:131-132.

    15. [15]

      Yoshino K., Hikida M., Tatsuno K., Kaneto K., Inuishi Y.. Emission spectra of phthalocyanine crystals[J]. J. Phys. Soc. Jpn., 1973,34:441-445.

    16. [16]

      Assour J.M., Harrison S.E.. On the optical absorptions of phthalocyanines[J]. J. Am. Chem. Soc., 1965,87:651-652.

    17. [17]

      Fujii A., Yoshida M., Ohmori Y., Yoshino K.. Two-band electroluminescent emission in organic electroluminescent diode with phthalocyanine film[J]. Jpn. J. Appl. Phys., 1996,35:L37-L39.

    18. [18]

      Rębarz M., Wojdyła M., Bała W., Łukasiak Z.. Study of excited states in thin films of perylene derivatives by photoluminescence and absorption spectroscopy[J]. Opt. Mater., 2008,30:774-776.

    19. [19]

      Cocchi M., Virgili D., Fattori V., Williams J.A.G., Kalinowski J.. Highly efficient nearinfrared organic excimer electrophosphorescent diodes[J]. Appl. Phys. Lett., 2007,90.

    20. [20]

      Tang C.W., VanSlyke S.A., Chen C.H.. Electroluminescence of doped organic thin films[J]. J. Appl. Phys., 1989,65:3610-3616.

    21. [21]

      Loutfy R.O., Sharp J.H.. Electrode behaviour of insoluble suspensions of metal-free phthalocyanines in methylene chloride[J]. J. Appl. Electrochem., 1977,7:315-321.

  • 加载中
    1. [1]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    2. [2]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    3. [3]

      Yuan LiuBoyang WangYaxin LiWeidong LiSiyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426

    4. [4]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    5. [5]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    6. [6]

      Zihong LiJie ChengPing HuangGuoliang WuWeiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153

    7. [7]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    8. [8]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

    9. [9]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    10. [10]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    11. [11]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    12. [12]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    13. [13]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    14. [14]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    15. [15]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    16. [16]

      Lei WangJun-Jie WuChang-Cun YanWan-Ying YangZong-Lu CheXin-Yu XiaXue-Dong WangLiang-Sheng Liao . Near-infrared organic lasers with ultra-broad emission bands by simultaneously harnessing four-level and six-level systems. Chinese Chemical Letters, 2024, 35(8): 109365-. doi: 10.1016/j.cclet.2023.109365

    17. [17]

      Fuzheng ZhangChao ShiJiale LiFulin JiaXinyu LiuFeiyang LiXinyu BaiQiuxia LiAihua YuanGuohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596

    18. [18]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    19. [19]

      Yuyang ZhouZiwang MaoJing-Juan Xu . Recent advances in near infrared (NIR) electrochemiluminescence luminophores. Chinese Chemical Letters, 2024, 35(11): 109622-. doi: 10.1016/j.cclet.2024.109622

    20. [20]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

Metrics
  • PDF Downloads(2)
  • Abstract views(636)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return