Citation: Li Yan, Miao Yan-Ming, Yang Mao-Qing, Wu Yu-Xia, Yan Gui-Qin. DNA detection based on Mn-doped ZnS quantum dots/methylene blue nanohybrids[J]. Chinese Chemical Letters, ;2016, 27(5): 773-778. doi: 10.1016/j.cclet.2016.01.006 shu

DNA detection based on Mn-doped ZnS quantum dots/methylene blue nanohybrids

  • Corresponding author: Miao Yan-Ming, mym8207@126.com Yan Gui-Qin, gqyan@126.com
  • Received Date: 7 July 2015
    Revised Date: 10 October 2015
    Accepted Date: 17 October 2015
    Available Online: 8 May 2016

Figures(7)

  • Nanohybrids were formed from 3-mercaptopropionic acid (MPA)-coated Mn-doped ZnS quantum dots (QDs) and methylene blue (MB) via electrostatic interaction, and then used in the detection of trace DNA. The principle of detection is as follows: MB binds with Mn-doped ZnS QDs via electrostatic interaction, and then quenches the room temperature phosphorescence (RTP) of the QDs through photoinduced electron-transfer (PIET). After the addition of DNA, MB binds with DNA through intercalation and electrostatic interaction, and desorbs from the surfaces of Mn-doped ZnS QDs, which recovers the RTP of the QDs. On this basis, a DNA detection method based on the properties of RTP was set up. This method shows a detection range of 0.2-20 mg/L, and a detection limit of 0.113 mg/L. Since this method is based on the RTP of QDs, it is not interfered by the background fluorescence or scattering light in vivo, and thus, avoids complex sample pretreatment. Thus, this method is very feasible for detection of trace DNA in biofluids.
  • 加载中
    1. [1]

      Burda C., Chen X.B., Narayanan R., El-Sayed M.A.. Chemistry and properties of nanocrystals of different shapes[J]. Chem. Rev., 2005,105:1025-1102.

    2. [2]

      Raymo F.M., Yildiz I.. Luminescent chemosensors based on semiconductor quantum dots[J]. Phys. Chem. Chem. Phys., 2007,9:2036-2043.

    3. [3]

      Yildiz I., Tomasulo M., Raymo F.M.. A mechanism to signal receptor-substrate interactions with luminescent quantum dots[J]. Proc. Natl. Acad. Sci. U. S. A., 2006,103:11457-11460.

    4. [4]

      Medintz I.L., Clapp A.R., Mattoussi H.. Self-assembled nanoscale biosensors based on quantum dot FRET donors[J]. Nat. Mater., 2003,2:630-638.

    5. [5]

      Clapp A.R., Medintz I.L., Mauro J.M.. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors[J]. J. Am. Chem. Soc., 2004,126:301-310.

    6. [6]

      Medintz I.L., Konnert J.H., Clapp A.R.. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly[J]. Proc. Natl. Acad. Sci. U. S. A., 2004,101:9612-9617.

    7. [7]

      Wang S.P., Mamedova N., Kotov N.A., Chen W., Studer J.. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates[J]. Nano Lett., 2002,2:817-822.

    8. [8]

      Zhou D.J., Ying L.M., Hong X.. A compact functional quantum dot-DNA conjugate:preparation, hybridization, and specific label-free DNA detection[J]. Langmuir, 2008,24:1659-1664.

    9. [9]

      Peng H., Zhang L.J., Kjällman T.H.M., Soeller C., Travas-Sejdic J.. DNA hybridization detection with blue luminescent quantum dots and dye-labeled single-stranded DNA[J]. J. Am. Chem. Soc., 2007,129:3048-3049.

    10. [10]

      Shi L.F., Rosenzweig N., Rosenzweig Z.. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors[J]. Anal. Chem., 2007,79:208-214.

    11. [11]

      Guo S.R., Bao D.D., Upadhyayula S.. Photoinduced electron transfer between pyridine coated cadmium selenide quantum dots and single sheet graphene[J]. Adv. Funct. Mater., 2013,23:5199-5211.

    12. [12]

      Cordes D.B., Gamsey S., Singaram B.. Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution[J]. Angew. Chem. Int. Ed. Engl., 2006,45:3829-3832.

    13. [13]

      Callan J.F., Mulrooney R.C., Kamila S.K., McCaughan B.. Anion sensing with luminescent quantum dots-a modular approach based on the photoinduced electron transfer (PET) mechanism[J]. J. Fluoresc., 2008,18:527-532.

    14. [14]

      Basili S., Giacco T.D., Elisei F., Germani R.. An acridinium-based sensor as a fluorescent photoinduced electron transfer probe for proton detection modulated by anionic micelles[J]. Org. Biomol. Chem., 2014,12:6677-6683.

    15. [15]

      Traviesa-Alvarez J.M., Sánchez-Barragán I., Costa-Fernández J.M., Pereiro R., Sanz-Medel A.. Room temperature phosphorescence optosensing of benzo[J]. Analyst, 2007,132:218-223.

    16. [16]

      Kuijt J., Ariese F., Brinkman U.A.T., Gooijer C.. Room temperature phosphorescence in the liquid state as a tool in analytical chemistry[J]. Anal. Chim. Acta, 2003,488:135-171.

    17. [17]

      Sánchez-Barragán I., Costa-Fernández J.M., Sanz-Medel A., Valledor M., Campo J.C.. Room-temperature phosphorescence (RTP) for optical sensing[J]. Trends Anal. Chem., 2006,25:958-967.

    18. [18]

      He Y., Wang H.F., Yan X.P.. Exploring Mn-doped ZnS quantum dots for the roomtemperature phosphorescence detection of enoxacin in biological fluids[J]. Anal. Chem., 2008,80:3832-3837.

    19. [19]

      Li Y., Liu X.Y., Yuan H.Y., Xiao D.. Glucose biosensor based on the room-temperature phosphorescence of TiO2/SiO2 nanocomposite[J]. Biosens. Bioelectron., 2009,24:3706-3710.

    20. [20]

      Zhang Z.F., Miao Y.M., Zhang Q.D., Lian L.W., Yan G.Q.. Selective room temperature phosphorescence detection of heparin based on manganese-doped zinc sulfide quantum dots/polybrene self-assembled nanosensor[J]. Biosens. Bioelectron., 2015,68:556-562.

    21. [21]

      Wang H.F., He Y., Ji T.R., Yan X.P.. Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water[J]. Anal. Chem., 2009,81:1615-1621.

    22. [22]

      Carter M.T., Rodriguez M., Bard A.J., studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt (Ⅲ) and iron (Ⅱ) with 1 Voltammetric. 10-phenanthroline and 2,2'-bipyridine[J]. J. Am. Chem. Soc., 1989,111:8901-8911.

    23. [23]

      Song G., Li L., Liu L.. Fluorometric determination of DNA using a new ruthenium complex Ru(bpy)2PIP(V) as a nucleic acid probe[J]. Anal. Sci., 2002,18:757-759.

    24. [24]

      Liu Q., Pu Z.H., Asiri A.M., Sun X.P.. Bamboo-like nitrogen-doped carbon nanotubes toward fluorescence recovery assay for DNA detection[J]. Sens. Actuators B:Chem., 2015,206:37-42.

    25. [25]

      Wei W., Gao C.Y., Xiong Y.X.. A fluorescence method for detection of DNA and DNA methylation based on graphene oxide and restriction endonuclease hpaⅡ[J]. Talanta, 2015,131:342-347.

    26. [26]

      Breimer M.A., Gelfand Y., Sadik O.A.. Integrated capillary fluorescence DNA biosensor[J]. Biosens. Bioelectron., 2003,18:1135-1147.

    27. [27]

      Ye Y., Stivers J.T.. Fluorescence-based high-throughput assay for human DNA (cytosine-5)-methyltransferase 1[J]. Anal. Biochem., 2010,401:168-172.

    28. [28]

      Liu B., Bazan G.C.. Homogeneous fluorescence-based DNA detection with watersoluble conjugated polymers[J]. Chem. Mater., 2004,16:4467-4476.

    29. [29]

      Zhu C.Q., Zhuo S.J., Zheng H.. Fluorescence enhancement method for the determination of nucleic acids using cationic cyanine as a fluorescence probe[J]. Analyst, 2004,129:254-258.

    30. [30]

      Zhao L.L., Wu X., Ding H.H., Yang J.H.. Fluorescence enhancement effect of morinnucleic acid-L-cysteine-capped nano-ZnS system and the determination of nucleic acid[J]. Analyst, 2008,133:896-902.

    31. [31]

      Li H.T., Ying L.M., Green J.J., Balasubramanian S., Klenerman D.. Ultrasensitive coincidence fluorescence detection of single DNA molecules[J]. Anal. Chem., 2003,75:1664-1670.

    32. [32]

      Wang L.Y., Wang L., Gao F., Yu Z.Y., Wu Z.M.. Application of functionalized CdS nanoparticles as fluorescence probe in the determination of nucleic acids[J]. Analyst, 2002,127:977-980.

    33. [33]

      Zhuang J.Q., Zhang X.D., Wang G.. Synthesis of water-soluble ZnS:Mn2+ nanocrystals by using mercaptopropionic acid as stabilizer[J]. J. Mater. Chem., 2003,13:1853-1857.

    34. [34]

      Udenfriend S., Zaltzman P.. Fluorescence characteristics of purines, pyrimidines, and their derivatives:measurement of guanine in nucleic acid hydrolyzates[J]. Anal. Biochem., 1962,3:49-59.

    35. [35]

      Miao Y.M., Li Y.T., Zhang Z.F., Yan G.Q., Bi Y.. "Turn off-on" phosphorescent biosensors for detection of DNA based on quantum dots/acridine orange[J]. Anal. Biochem., 2015,475:32-39.

    36. [36]

      Miao Y.M., Zhang Z.F., Gong Y., Yan G.Q.. Phosphorescent quantum dots/doxorubicin nanohybrids based on photoinduced electron transfer for detection of DNA[J]. Biosens. Bioelectron., 2014,59:300-306.

    37. [37]

      Wu P., He Y., Wang H.F., Yan X.P.. Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids[J]. Anal. Chem., 2010,82:1427-1433.

    38. [38]

      Chung J.H., Ah C.S., Jang D.J.. Formation and distinctive decay times of surface- and lattice-bound Mn2+ impurity luminescence in ZnS nanoparticles[J]. J. Phys. Chem. B, 2001,105:4128-4132.

    39. [39]

      Tysoe S.A., Morgan R.J., Baker A.D., Strekas T.C.. Spectroscopic investigation of differential binding modes of Δ- and Λ-Ru(bpy)2(ppz)2+ with calf thymus DNA[J]. J. Phys. Chem., 1993,97:1707-1711.

    40. [40]

      Long E.C., Barton J.K.. On demonstrating DNA intercalation[J]. Acc. Chem. Res., 1990,23:271-273.

    41. [41]

      Liu J., Lu T.B., Li H.. DNA-binding and cleavage studies of a dinuclear copper (Ⅱ) complex with a 26-membered hexaazamacrocycle[J]. Transit. Metal Chem., 2002,27:686-690.

    42. [42]

      Lerman L.S.. Structural considerations in the interaction of DNA and acridines[J]. J. Mol. Biol., 1961,3:18-30.

    43. [43]

      Li Y.X., Chen J.L., Zhu C.Q.. Preparation and application of cysteine-capped ZnS nanoparticles as fluorescence probe in the determination of nucleic acids[J]. Spectrochim. Acta A:Mol. Biomol. Spectrosc., 2004,60:1719-1724.

    44. [44]

      Yu Z.S., Ma X.Y., Zhang Q., Yu B.. Application of ZnS:Mn/ZnS quantum dots in quantitative analysis of DNA[J]. J. Instr. Anal., 2011,30:789-794.

    45. [45]

      Wang L.L., Liu S.P., Liang W.J.. Detection of DNA utilizing a fluorescent reversible change of a biosensor based on the electron transfer from quantum dots to polymyxin B sulfate[J]. J. Colloid Interface Sci., 2015,448:257-264.

  • 加载中
    1. [1]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    2. [2]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    3. [3]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    4. [4]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    5. [5]

      Biao HuangTao TangFushou LiuShi-Hui ChenZhi-Ling ZhangMingxi ZhangRan Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694

    6. [6]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    7. [7]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    8. [8]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    9. [9]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2023.100335

    10. [10]

      Jiayin ZhouDepeng LiuLongqiang LiMin QiGuangqiang YinTao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929

    11. [11]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    12. [12]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    13. [13]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    14. [14]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    15. [15]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    16. [16]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    17. [17]

      Fengkai ZouBorui SuHan LengNini XinShichao JiangDan WeiMei YangYouhua WangHongsong Fan . Red-emissive carbon quantum dots minimize phototoxicity for rapid and long-term lipid droplet monitoring. Chinese Chemical Letters, 2024, 35(10): 109523-. doi: 10.1016/j.cclet.2024.109523

    18. [18]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    19. [19]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    20. [20]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

Metrics
  • PDF Downloads(2)
  • Abstract views(683)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return