Citation: Rahim Fazal, Ali Muhammad, Ullah Shifa, Rashid Umer, Ullah Hayat, Taha Muhammad, Javed Muhammad Tariq, Rehman Wajid, Khan Aftab Ahmad, Abid Obaid Ur Rahman, Bilal Muhammad. Development of bis-thiobarbiturates as successful urease inhibitors and their molecular modeling studies[J]. Chinese Chemical Letters, ;2016, 27(5): 693-697. doi: 10.1016/j.cclet.2015.12.035 shu

Development of bis-thiobarbiturates as successful urease inhibitors and their molecular modeling studies

  • Corresponding author: Rahim Fazal, fazalstar@gmail.com Ali Muhammad, muhammad_ali@ciit.net.pk
  • Received Date: 17 August 2015
    Revised Date: 25 October 2015
    Accepted Date: 30 December 2015
    Available Online: 25 May 2016

Figures(4)

  • Bis-thiobarbiturate derivatives 1-15 have been synthesized, characterized by 1HNMR and EI-MS and screened for urease inhibition. All compounds showed various degree of urease inhibitory activity with IC50 values ranging 7.45±0.12-74.24±0.81 μmol/L while the standard thiourea behaved normally (IC50=21.10±0.12). Compounds 1 (IC50=7.45±0.12 μmol/L), 9 (IC50=18.17±1.03 μmol/L) and 13 (IC50=8.61±0.45 μmol/L) showed excellent urease inhibitory activity in the series. Molecular modeling studies were performed to understand the binding site with the bimetallic nickel center of the enzyme. Structure-activity relationship has also been established for these compounds. This study identified bisthiobarbiturate as a novel class of urease inhibitors.
  • 加载中
    1. [1]

      Krajewska B., Zaborska W.. Double mode of inhibition-inducing interactions of 1,4-naphthoquinone with urease:Arylation versus oxidation of enzyme thiols[J]. Bioorg. Med. Chem., 2007,15:4144-4151.

    2. [2]

      Mobley H.L.T., Hausinger R.P.. Microbial ureases:significance, regulation, and molecular characterization[J]. Microbiol. Rev., 1989,53:85-108.

    3. [3]

      Amtul, Kausar, Atta-ur-Rahman. Cysteine based novel noncompetitive inhibitors of urease(s)-Distinctive inhibition susceptibility of microbial and plant ureases[J]. Bioorg. Med. Chem., 2006,14:6737-6744.

    4. [4]

      Wilcox P.E.. Chymotrypsinogens chymotrypsins[J]. Methods Enzymol., 1970,19:64-108.

    5. [5]

      Bayerdörffer E., Ottenjann R.. The role of antibiotics in Campylobacter pylori associated peptic ulcer disease[J]. J. Gastroenterol., 1988,23:93-100.

    6. [6]

      Collins C.M., D'Orazio S.E.F.. Bacterial ureases:structure, regulation of expression and role in pathogenesis[J]. Mol. Microbiol., 1993,9:907-913.

    7. [7]

      Montecucco C., Rappuoli R.. living dangerously:how Helicobacter pylori survives in the human stomach[J]. Nat. Rev. Mol. Cell Biol., 2001,6:457-467.

    8. [8]

      Seneviratne G., Van Holm L.H.J., Ekanayake E.M.H.G.S.. Agronomic benefits of rhizobial inoculant use over nitrogen fertilizer application in tropical soybean[J]. Field Crops. Res., 2000,68:199-203.

    9. [9]

      Ramsay K.S.T., Wafo P., Ali Z.. Chemical constituents of Stereospermum acuminatissimum and their urease and a-chymotrypsin inhibitions[J]. Fitoterapia, 2012,83:204-208.

    10. [10]

      Menezes D.C., Borges E., Torres M.F., Braga J.P.. A kinetic study of jack-bean urease denaturation by a new dithiocarbamate bismuth compound[J]. Chem. Phys. Lett., 2012,548:85-89.

    11. [11]

      Zuccarello F., Giuseppe B., Concetta G., Annalinda C.. Barbituric and thiobarbituric acids:a conformational and spectroscopic study[J]. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc., 2003,59:139-151.

    12. [12]

      Kidwai M., Thakur R., Mohan R.. Ecofriendly synthesis of novel antifungal (thio)-barbituric acid derivatives[J]. Acta Chim. Solv., 2005,52:88-92.

    13. [13]

      Khan K.M., Rahim F., Khan A.. Synthesis and structure-activity relationship of thiobarbituric acid derivatives as potent inhibitors of urease[J]. Bioorg. Med. Chem., 2014,22:4119-4123.

    14. [14]

      Akopyan L.K., Adzhibekyan A.S., Porkinyan G.A.. Estimation of transition state and synthesis of barbituric acid with their derivatives of 1, 3, 4-thiadiazole[J]. A. Etumasyan, Bilzh. Arm., 1976,29:80-83.

    15. [15]

      Ma L., Li S., Zheng H.. Synthesis and biological activity of novel barbituric and thiobarbituric acid derivatives against non-alcoholic fatty liver disease[J]. Eur. J. Med. Chem., 2011,46:2003-2010.

    16. [16]

      Brouwer E.W., Felauerand G.E., Bell A.R.. Synthesis, structure and solvatochromic properties of 3-cyano-4,6-diphenyl-5-(3- and 4-substituted phenylazo)-2-pyridones[J]. U.S. Patent, 1990,779982.

    17. [17]

      Archana S.V.K., Kumar A.. Synthesis of some newer derivatives of substitute quinazolinonyl-2-oxo/thiobarbituric acid as potent anticonvulsant agents[J]. Bioorg. Med. Chem., 2004,12:1257-1264.

    18. [18]

      Khan K.M., Ali M., Farooqui T.A.. An improved method for the synthesis of 5-arylidene barbiturates using BiCl3[J]. J. Chem. Soc. Pak., 2009,31:823-828.

    19. [19]

      Hassan M., Khan Faidallah K.A.. Synthesis and biological evaluation of new barbituric and thiobarbituric acid fluoro analogs of benzenesulfonamides as antidiabetic and antibacterial agents[J]. J. Fluorine Chem., 2012,142:96-104.

    20. [20]

      Puerta D.T., Cohen S.M.A.. A bioinorganic perspective on matrix metalloproteinase inhibition[J]. Curt. Topic. Med. Chem., 2004,4:1551-1573.

    21. [21]

      Weatherburn M.W.. Phenol-hypochlorite reaction for determination of ammonia[J]. Analyt. Chem., 1967,39:971-974.

    22. [22]

      Molecular Operating Environment (MOE), 2012.10; Chemical Computing Group Inc., Montreal, QC, Canada, H3A 2R7, 2012.

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    3. [3]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    4. [4]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    5. [5]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    6. [6]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    7. [7]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    8. [8]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    9. [9]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    10. [10]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    11. [11]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    12. [12]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    13. [13]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    14. [14]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    15. [15]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    16. [16]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    17. [17]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    18. [18]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    19. [19]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    20. [20]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

Metrics
  • PDF Downloads(1)
  • Abstract views(751)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return