Citation: Mubarak H. Shaikh, Dnyaneshwar D. Subhedar, Firoz A. Kalam Khan, Jaiprakash N. Sangshetti, Bapurao B. Shingate. 1,2,3-Triazole incorporated coumarin derivatives as potential antifungal and antioxidant agents[J]. Chinese Chemical Letters, ;2016, 27(02): 295-301. doi: 10.1016/j.cclet.2015.11.003 shu

1,2,3-Triazole incorporated coumarin derivatives as potential antifungal and antioxidant agents

  • Corresponding author: Bapurao B. Shingate, 
  • Received Date: 10 March 2015
    Available Online: 7 July 2015

  • A series of novel ethyl-7-((1-(benzyl)-1H-1,2,3-triazol-4-yl)methoxy)-2-oxo-2H-chromene-3-carboxylates 8a-h as potential antifungal agents were synthesized via click chemistry. The antifungal activity was evaluated against five human pathogenic fungal strains, such as Candida albicans, Fusarium oxysporum, Aspergillus flavus, Aspergillus niger and Cryptococcus neoformans. Compound 8c, 8d, 8e and 8h were found to be equipotent against C. albicans when compared with miconazole and compound 8f was found to be two-fold more active compared with miconazole and equipotent to fluconazole against C. albicans. The coumarin-based triazole derivatives were also evaluated for antioxidant activity and compound 8a was found to be potent antioxidant when compared with standard drug. Furthermore, molecular docking study of the newly synthesized compounds was performed and results showed good binding mode in the active site of fungal C. albicans enzyme P450 cytochrome lanosterol 14α-emethylase. Moreover, the synthesized compounds were also analyzed for ADME properties and showed potential to build up as good oral drug candidates.
  • 加载中
    1. [1]

      [1] D.J. Sheehan, C.A. Hitchcock, C.M. Sibley, Current and emerging azole antifungal agents, Clin. Microbiol. Rev. 12 (1999) 40-79.

    2. [2]

      [2] R. Cha, J.D. Sobel, Fluconazole for the treatment of candidiasis: 15 years experience, Expert Rev. Anti-Infect. Ther. 2 (2004) 357-366.

    3. [3]

      [3] N.H. Georgopapadakou, T.J. Walsh, Antifungal agents: chemotherapeutic targets and immunologic strategies, Antimicrob. Agents Chemoth. 40 (1996) 279-291.

    4. [4]

      [4] M.A. Pfaller, S.A. Messer, R.J. Hollis, R.N. Jones, In vitro activities of posaconazole (Sch 56592) compared with those of itraconazole and fluconazole against 3,685 clinical isolates of Candida spp. and Cryptococcus neoformans, Antimicrob. Agents Chemoth. 45 (2001) 2862-2864.

    5. [5]

      [5] L. Jeu, F.J. Piacenti, A.G. Lyakhovetskiy, H.B. Fung, Voriconazole, Clin. Ther. 25 (2003) 1321-1381.

    6. [6]

      [6] G.I. Lepesheva, N.G. Zaitseva, W.D. Nes, et al., CYP51 from trypanosomacruzi: a phyla-specific residue in the B0 helix defines substrate preferences of sterol 14ademethylase, J. Biol. Chem. 281 (2006) 3577-3585.

    7. [7]

      [7] (a) K. Ilango, C.R. Biju, In silico docking investigation, synthesis and cytotoxic studies of coumarin substituted 1, 3, 4-oxadiazole derivatives, J. Pharm. Res. 5 (2012) 1514-1517;

    8. [8]

      (b) P.M. Ronad, M.N. Noolvi, S. Sapkal, et al., Synthesis and antimicrobial activity of 7-(2-substituted phenylthiazolidinyl)-benzopyran-2-one derivatives, Eur. J. Med. Chem. 45 (2010) 85-89.

    9. [9]

      [8] (a) M. Raghu, A. Nagaraj, C.S. Reddy, Synthesis and in vitro study of novel bis-[3-(2-arylmethylidenimino-1,3-thiazol-4-yl)-4-hydroxy-2H-chromen-2-one-6-yl] methane and bis-[3-(2-arylidenhydrazo-1,3-thiazol-4-yl)-4-hydroxy-2Hchromen-2-one-6-yl] methane as potential antimicrobial agents, J. Heterocyclic Chem. 46 (2009) 261-267;

    10. [10]

      (b) M.A. Gouda, M.A. Berghot, E.A. Baz, et al., Synthesis, antitumor and antioxidant evaluation of some new thiazole and thiophene derivatives incorporated coumarin moiety, Med. Chem. Res. 21 (2012) 1062-1070.

    11. [11]

      [9] (a) J. Sun, W.X. Ding, K.Y. Zhang, Y. Zou, Efficient synthesis and biological evaluation of 4-arylcoumarin derivatives, Chin. Chem. Lett. 22 (2011) 667-670;

    12. [12]

      (b) J.M.C. Gutteridge, B. Halliwell, Invited review free radicals in disease processes: a compilation of cause and consequence, Free Radical Res. Commun. 19 (1993) 141-158.

    13. [13]

      [10] R.M. Patel, N.J. Patel, In vitro antioxidant activity of coumarin compounds by DPPH, super oxide and nitric oxide free radical scavenging methods, J. Adv. Pharm. Technol. Res. 1 (2011) 52-68.

    14. [14]

      [11] A. Murakami, G.X. Gao, M. Omura, et al., 1,1-Dimethylallylcoumarins potently supress both lipopolysaccharide-and interferon-γ-induced nitric oxide generation in mouse macrophage RAW 264.7 cells, Bioorg. Med. Chem. Lett. 10 (2000) 59-62.

    15. [15]

      [12] R.G. Lima-Neto, N.N.M. Cavalcante, R.M. Srivastava, et al., Synthesis of 1,2,3-triazole derivatives and in vitro antifungal evaluation on Candida strains, Molecules 17 (2012) 5882-5892.

    16. [16]

      [13] (a) N. Boechat, V.F. Ferreira, S.B. Ferreira, et al., Novel 1,2,3-triazole derivatives for use against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain, J. Med. Chem. 54 (2011) 5988-5999;

    17. [17]

      (b) J.L. He, J.P. Xie, Advances in Mycobacterium siderophore-based drug discovery, Acta Pharm. Sin. B 1 (2011) 8-13.

    18. [18]

      [14] S.G. Agalave, S.R. Maujan, V.S. Pore, Click chemistry: 1,2,3-triazoles as pharmacophores, Chem. Asian J. 6 (2011) 2696-2718.

    19. [19]

      [15] M.R. Senger, L.D.C.A. Gomes, S.B. Ferreira, et al., Kinetics studies on the inhibition mechanism of pancreatic a-amylase by glycoconjugated 1H-1,2,3-triazoles: a new class of inhibitors with hypoglycemiant activity, Chem. Biol. Chem. 13 (2012) 1584-1593.

    20. [20]

      [16] X. Zhao, B.W. Lu, J.R. Lu, et al., Design, synthesis and antimicrobial activities of 1,2,3-triazole derivatives, Chin. Chem. Lett. 23 (2012) 933-935.

    21. [21]

      [17] R.J. Bochis, J.C. Chabala, E. Harris, et al., Benzylated 1,2,3-triazoles as anticoccidiostats, J. Med. Chem. 34 (1991) 2843-2852.

    22. [22]

      [18] (a) J.L. Kelley, C.S. Koble, R.G. Davis, et al., 1-(Fluorobenzyl)-4-amino-1H-1,2,3-triazolo[4,5-c] pyridines: synthesis and anticonvulsant activity, J. Med. Chem. 38 (1995) 4131-4134;

    23. [23]

      (b) Q.H. Li, Y. Ding, N.W. Huang, Synthesis and biological activities of dithiocarbamates containing 1,2,3-triazoles group, Chinese Chem. Lett. 25 (2014) 1469-1472.

    24. [24]

      [19] R. Raj, P. Singh, P. Singh, et al., Azide-alkyne cycloadditionen route to 1H-1,2,3-triazole-tethered 7-chloroquinoline-isatin chimeras: synthesis and antimalarial evaluation, Eur. J. Med. Chem. 62 (2013) 590-596.

    25. [25]

      [20] A.K. Jordao, P.P. Afonso, V.F. Ferreira, et al., Antiviral evaluation of N-amino-1,2, 3-triazoles against cantagalo virus replication in cell culture, Eur. J. Med. Chem. 44 (2009) 3777-3783.

    26. [26]

      [21] B.L. Wilkinson, H. Long, E. Sim, A.J. Fairbanks, Synthesis of Arabino glycosyltriazoles as potential inhibitors of mycobacterial cell wall biosynthesis, Bioorg. Med. Chem. Lett. 18 (2008) 6265-6267.

    27. [27]

      [22] M. Kume, T. Kubota, Y. Kimura, et al., Orally active cephalosporins Ⅱ. Synthesis and structure-activity relationships of new 7-β-[(Z)-2-(2-aminothiazol-4-yl)-2-hydroxyiminoacetamido]-cephalosporins with 1,2,3-triazole in C-3 side chain, J. Antibiot. 46 (1993) 177-192.

    28. [28]

      [23] Y. Shi, C.H. Zhou, Synthesis and evaluation of a class of new coumarintriazole derivatives as potential antimicrobial agents, Bioorg. Med. Chem. Lett. 21 (2011) 956-960.

    29. [29]

      [24] K. Kushwaha, N. Kaushik, Lata, S.C. Jain, Design and synthesis of novel 2Hchromen-2-one derivatives bearing 1,2,3-triazole moiety as lead antimicrobials, Bioorg. Med. Chem. Lett. 24 (2014) 1795-1801.

    30. [30]

      [25] R.A. Kusanur, M.V. Kulkarni, New 1,3-dipolar cycloadducts of 3-azidoacetylcoumarins with DMAD and their antimicrobial activity, Indian J. Chem. B 44 (2005) 591-594.

    31. [31]

      [26] (a) M.H. Shaikh, D.D. Subhedar, L. Nawale, et al., 1,2,3-Triazole derivatives as antitubercular agents; Synthesis, biological evaluation and molecular docking study, Med. Chem. Commun. 6 (2015) 1104-1116;

    32. [32]

      (b) A.P.G. Nikalje, M.S. Ghodke, F.A.K. Khan, J.N. Sangshetti, CAN catalyzed onepot synthesis and docking study of some novel substituted imidazole coupled 1,2,4-triazole-5-carboxylic acids as antifungal agents, Chin. Chem. Lett. 26 (2015) 108-112;

    33. [33]

      (c) J.N. Sangshetti, F.A.K. Khan, R.S. Chouthe, M.G. Damale, D.B. Shinde, Synthesis, docking and ADMET prediction of novel 5-((5-substituted-1H-1,2,4-triazol-3-yl) methyl)-4,5,6,7-tetrahydrothieno[3,2-c] pyridine as antifungal agents, Chin. Chem. Lett. 25 (2014) 1033-1038;

    34. [34]

      (d) B.B. Shingate, B.G. Hazra, D.B. Salunke, V.S. Pore, M.V. Deshpande, Stereoselective synthesis and antimicrobial activity of steroidal C-20 tertiary alcohols with thiazole/pyridine side chain, Eur. J. Med. Chem. 46 (2011) 3681-3689;

    35. [35]

      (e) A.H. Kategaonkar, P.V. Shinde, A.H. Kategaonkar, et al., Synthesis and biological evaluation of new 2-chloro-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)quinoline derivatives via click chemistry approach, Eur. J. Med. Chem. 45 (2010) 3142-3146.

    36. [36]

      [27] D. Greenwood, R.C.B. Slack, J.F. Peutherer, Medical Microbiology, 14th ed., ELBS, London, 1992.

    37. [37]

      [28] M. Burits, F. Bucar, Antioxidant activity of nigella sativa essential oil, Phytother. Res. 14 (2000) 323-328.

    38. [38]

      [29] T.A. Halgren, Merck molecular force field. I. Basis form, scope, parameterization, and performance of MMFF94, J. Comput. Chem. 17 (1996) 490-519.

    39. [39]

      [30] R.W.W. Hooft, G. Vriend, C. Sander, E.E. Abola, Errors in protein structures, Nature 381 (1996) 272.

    40. [40]

      [31] VLife Molecular Design Suite 4.3, VLife Sciences Technologies Pvt. Ltd., www.Vlifesciences. com.

    41. [41]

      [32] C.A. Lipinski, L. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 46 (2001) 3-26.

    42. [42]

      [33] Molinspiration Chemoinformatics Brastislava, Slovak Republic, Available from: http://www.molinspiration.com/cgi-bin/properties 2014.

    43. [43]

      [34] Y.H. Zhao, M.H. Abraham, J. Le, et al., Rate-limited steps of human oral absorption and QSAR studies, Pharm. Res. 19 (2002) 1446-1457.

    44. [44]

      [35] Drug-likeness and molecular property prediction, available from: http://www.molsoft.com/mprop/.

    45. [45]

      [36] S.G. Alvarez, M.T. Alvarez, A practical procedure for the synthesis of alkyl azides at ambient temperature in dimethyl sulfoxide in high purity and yield, Synthesis 4 (1997) 413-414.

    46. [46]

      [37] W.L. Mendelson, S. Hayden, Preparation of 2,4-dihydroxybenzaldehyde by the Vilsmeier-Haack reaction, Synthetic Commun. 26 (1996) 603-610.

    47. [47]

      [38] K.K. Srinivasan, Y. Neelima, J. Alex, et al., Synthesis of novel furobenzopyrone derivatives and evaluation of their antimicrobial and antiinflammatory activity, Indian J. Pharm. Sci. 69 (2007) 326-331.

    48. [48]

      [39] P. Ertl, B. Rohde, P. Selzer, Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties, J. Med. Chem. 43 (2000) 3714-3717.

  • 加载中
    1. [1]

      Qiang LuoJinfeng SunZhibo LiBin LiuJianxun Ding . Thermo-sensitive poly(amino acid) hydrogel mediates cytoprotection through an antioxidant mechanism. Chinese Chemical Letters, 2025, 36(7): 110433-. doi: 10.1016/j.cclet.2024.110433

    2. [2]

      Jiajie GuJiaxiang GuLei Yu . Selenium and Alzheimer's disease. Chinese Chemical Letters, 2025, 36(8): 110727-. doi: 10.1016/j.cclet.2024.110727

    3. [3]

      Zhi-Peng ZhouXin WeiMing YanZhi-Guo WangRui HongJia-Zhuang Xu . Multifunctional selenium nanoparticles/gelatin-based nanocomposite hydrogel adhesive for accelerated full-thickness wound healing. Chinese Chemical Letters, 2025, 36(9): 111400-. doi: 10.1016/j.cclet.2025.111400

    4. [4]

      Yao ZouDifei GongHaiguang YangHongmei YuGuorong HeNingbo GongLianhua FangGuanhua DuYang Lu . Prediction, screening, characterization, antioxidant and antihypoxic effects of multi-component zwitterionic cocrystals of dietary flavonoids with picolinic acid. Chinese Chemical Letters, 2025, 36(9): 110768-. doi: 10.1016/j.cclet.2024.110768

    5. [5]

      Liqiang Hao Boyi Nie Ziping Wan Jianghua Qiu . The Role of SOD in Skincare: A Chemical Science Popularization Experiment. University Chemistry, 2025, 40(7): 241-248. doi: 10.12461/PKU.DXHX202409084

    6. [6]

      Jiarong ZHUXiaohua ZHANGXinting XIONGXuliang NIEXiuying SONGMiaomiao ZHANGDayong PENGXiuguang YI . Crystal structure, Hirshfeld surface analysis, and antifungal activity of five complexes based on 2,5-bis(carboxymethoxy)terephthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2358-2370. doi: 10.11862/CJIC.20250150

    7. [7]

      Bing XieQi JiangFang ZhuYaoyao LaiYueming ZhaoWei HePei Yang . Transdermal delivery of amphotericin B using deep eutectic solvents for antifungal therapy. Chinese Chemical Letters, 2025, 36(5): 110508-. doi: 10.1016/j.cclet.2024.110508

    8. [8]

      Yun-Feng LiuHui-Fang DuYa-Hui ZhangZhi-Qin LiuXiao-Qian QiDu-Qiang LuoFei Cao . Chaeglobol A, an unusual octocyclic sterol with antifungal activity from the marine-derived fungus Chaetomium globosum HBU-45. Chinese Chemical Letters, 2025, 36(3): 109858-. doi: 10.1016/j.cclet.2024.109858

    9. [9]

      Hao LiHanzhi LuLinlin HuXueli ZhangHua ShaoFulun LiYanfei Shen . Dynamic surface-enhanced Raman spectroscopy-based metabolic profiling: A novel pathway to overcoming antifungal resistance. Chinese Chemical Letters, 2025, 36(7): 110342-. doi: 10.1016/j.cclet.2024.110342

    10. [10]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    11. [11]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    12. [12]

      Xicheng LiDong MoShoushan HuMeng PanMeng WangTingyu YangChangxing QuYujia WeiJianan LiHanzhi DengZhongwu BeiTianying LuoQingya LiuYun YangJun LiuJun WangZhiyong Qian . A Pt@ZIF-8/ALN-ac/GelMA composite hydrogel with antibacterial, antioxidant, and osteogenesis for periodontitis. Chinese Chemical Letters, 2025, 36(9): 110674-. doi: 10.1016/j.cclet.2024.110674

    13. [13]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    14. [14]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    15. [15]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    16. [16]

      Honglin Gao Chunlin Yuan Hongyu Chen Aiyi Dong Pan Gao Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561

    17. [17]

      Zekun ZhangShiji LiQian ZhangShanshan LiLiu YangWei YanHao Xu . Further study of CO2 electrochemical reduction to gas products on Cu: Influence of the electrolyte. Chinese Chemical Letters, 2025, 36(9): 110742-. doi: 10.1016/j.cclet.2024.110742

    18. [18]

      Yunzhe ZhengSi SunJiali LiuQingyu ZhaoHeng ZhangJing ZhangPeng ZhouZhaokun XiongChuan-Shu HeBo Lai . Application of machine learning for material prediction and design in the environmental remediation. Chinese Chemical Letters, 2025, 36(9): 110722-. doi: 10.1016/j.cclet.2024.110722

    19. [19]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    20. [20]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

Metrics
  • PDF Downloads(1)
  • Abstract views(1693)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return