Citation: Zahid Zaheer, Firoz A. Kalam Khan, Jaiprakash N. Sangshetti, Rajendra H. Patil. Expeditious synthesis, antileishmanial and antioxidant activities of novel 3-substituted-4-hydroxycoumarin derivatives[J]. Chinese Chemical Letters, ;2016, 27(02): 287-294. doi: 10.1016/j.cclet.2015.10.028 shu

Expeditious synthesis, antileishmanial and antioxidant activities of novel 3-substituted-4-hydroxycoumarin derivatives

  • Corresponding author: Zahid Zaheer, 
  • Received Date: 10 April 2015
    Available Online: 31 July 2015

  • A series of novel 3-substituted-4-hydroxycoumarin derivatives 6(a-l) were synthesized in high yield using one-pot three component coupling reaction catalyzed by ceric ammonium nitrate. These compounds were evaluated for antileishmanial activity against Leishmania donovani promastigotes and antioxidant activity (DPPH-radical scavenging activity). Two compounds, 6h (IC50 = 9.90 µmol/L) and 6i (IC50 = 6.90 µmol/L) displayed potent antileishmanial activity when compared with standard antileishmanial agents pentamidine (IC50 = 16.15 µmol/L) and miltefosine (IC50 = 12.50 µmol/L). Three compounds, 6c (IC50 = 10.79 µmol/L), 6h (IC50 = 10.60 µmol/L), and 6i (IC50 = 10.73 µmol/L) showed significant antioxidant activity favorably with the antioxidant standards butylated hydroxy toluene (IC50 = 16.47 µmol/L) and ascorbic acid (IC50 = 12.69 µmol/L). A molecular docking study of compounds 6(a-l) suggested a possible mode of binding with the Adenine phosphoribosyltransferase enzyme of L. donovani. ADME properties were predicted in silico and support the potential of 6(a-l) to show favorable drug-like properties.
  • 加载中
    1. [1]

      [1] (a) J.D. Berman, Human leishmaniasis: clinical, diagnostic, and chemotherapeutic developments in the last 10 years, Clin. Infect Dis. 24 (1997) 684-703;

    2. [2]

      (b) M. Khaw, C.B. Panosian, Human antiprotozoal therapy: past, present, and future, Clin. Microbiol. Rev. 8 (1995) 427-439.

    3. [3]

      [2] R. Reithinger, J.C. Dujardin, H. Louzir, et al., Cutaneous leishmaniasis, Lancet Infect. Dis. 7 (2007) 581-596.

    4. [4]

      [3] World Health Organization (WHO), Tropical Disease Research Progress, World Health Organization (WHO), 2001.

    5. [5]

      [4] R.W. Ashford, P. Desjeux, P. DeRaadt, Estimation of population at risk of infection and number of cases of leishmaniasis, Parasitol. Today 8 (1992) 104-105.

    6. [6]

      [5] (a) H.W. Murray, Treatment of visceral leishmaniasis in 2004, Am. J. Trop. Med. Hyg. 71 (2004) 787-794;

    7. [7]

      (b) S.L. Croft, Recent developments in the chemotherapy of leishmaniasis, Trends Pharmacol. Sci. 9 (1988) 376-381;

    8. [8]

      (c) J.D. Berman, Chemotherapy for leishmaniasis: biochemical mechanisms, clinical efficacy, and future strategies, Rev. Infect Dis. 10 (1988) 560-586.

    9. [9]

      [6] K.F. Gey, The antioxidant hypothesis of cardiovascular disease: epidemiology and mechanisms, Biochem. Soc. Trans. 18 (1990) 1041-1045.

    10. [10]

      [7] (a) M.A. Smith, G. Perry, P.L. Richey, et al., Oxidative damage in Alzheimer's, Nature 382 (1996) 120-121;

    11. [11]

      (b) M.N. Diaz, B. Frei, J.A. Vita, J.F. Keaney, Antioxidants and atherosclerotic heart disease, N. Engl. J. Med. 337 (1997) 408-416.

    12. [12]

      [8] R.M. Wilson, S.J. Danishefsky, Small molecule natural products in the discovery of therapeutic agents: the synthesis connection, J. Org. Chem. 71 (2006) 8329-8351.

    13. [13]

      [9] M.J. Chan-Bacab, L.M. Peña-Rodríguez, Plant natural products with leishmanicidal activity, Nat. Prod. Rep. 18 (2001) 674-688.

    14. [14]

      [10] (a) I. Kostova, S. Bhatia, P. Grigorov, et al., Coumarins as antioxidants, Curr. Med. Chem. 18 (2011) 3929-3951;

    15. [15]

      (b) I. Kostova, Synthetic and natural coumarins as antioxidants, Mini Rev. Med. Chem. 6 (2006) 365-374.

    16. [16]

      [11] (a) L. Gupta, A. Talwar, Nishi, et al., Synthesis of marine alkaloid: 8,9-dihydrocoscinamide B and its analogues as novel class of antileishmanial agents, Bioorg. Med. Chem. Lett. 17 (2007) 4075-4079;

    17. [17]

      (b) S.S. Chauhan, L. Gupta, M. Mittal, et al., Synthesis and biological evaluation of indolyl glyoxylamides as a new class of antileishmanial agents, Bioorg. Med. Chem. Lett. 20 (2010) 6191-6194.

    18. [18]

      [12] (a) N.P. Sahu, C. Pal, N.B. Mandal, et al., Synthesis of a novel quinoline derivative, 2-(2-methylquinolin-4-ylamino)-N-phenylacetamide—a potential antileishmanial agent, Bioorg. Med. Chem. 10 (2002) 1687-1693;

    19. [19]

      (b) Z. Dardari, M. Lemrani, A. Bahloul, et al., Antileishmanial activity of a new 8-hydroxyquinoline derivative designed 7-[5'-(3'-phenylisoxazolino)methyl]-8-hydroxyquinoline: preliminary study, Farmaco 59 (2004) 195-199.

    20. [20]

      [13] (a) A. Tahghighi, S. Emami, S. Razmi, et al., New 5-(nitroheteroaryl)-1,3, 4-thiadiazols containing acyclic amines at C-2: synthesis and SAR study for their antileishmanial activity, J. Enzyme Inhib. Med. Chem. 28 (2013) 843-852;

    21. [21]

      (b) C.S. Reid, A.F. Farahat, X.H. Zhu, et al., Antileishmanial bis-arylimidamides: DB766 analogs modified in the linker region and bis-arylimidamide structure-activity relationships, Bioorg. Med. Chem. Lett. 22 (2012) 6806-6810.

    22. [22]

      [14] V. Muñoz, C. Morretti, M. Sauvain, et al., Isolation of bis-indole alkaloids with antileishmanial and antibacterial activities from Perschiera van heurkii (syn. Tabernaemontana van heurkii), Planta Med. 60 (1994) 455-459.

    23. [23]

      [15] (a) A.G. Tempone, A.C.M.P. da Silva, C.A. Brandt, et al., Synthesis and antileishmanial activities of novel 3-substituted quinolines, Antimicrob. Agents Chemother. 49 (2005) 1076-1080;

    24. [24]

      (b) J.N. Sangshetti, F.A.K. Khan, A.A. Kulkarni, R. Arote, R.H. Patil, Antileishmanial drug discovery: comprehensive review of the last 10 years, RSC Adv. 5 (2015) 32376-32415.

    25. [25]

      [16] V.K. Marrapu, M. Mittal, R. Shivahare, S. Gupta, K. Bhandari, Synthesis and evaluation of new furanyl and thiophenyl azoles as antileishmanial agents, Eur. J. Med. Chem. 46 (2011) 1694-1700.

    26. [26]

      [17] O. Kayser, A.F. Kiderlen, H. Laatsch, S.L. Croft, In vitro leishmanicidal activity of monomeric and dimeric naphthoquinones, Acta Trop. 77 (2000) 307-314.

    27. [27]

      [18] (a) J.N. Sangshetti, D.B. Shinde, Synthesis of some novel 3-(1-(1-substitutedpiperidin-4-yl)-1H-1,2, 3-triazol-4-yl)-5-substituted phenyl-1,2,4-oxadiazoles as antifungal agents, Eur. J. Med. Chem. 46 (2011) 1040-1044;

    28. [28]

      (b) J.N. Sangshetti, R.R. Nagawade, D.B. Shinde, Synthesis of novel 3-(1-(1-substituted piperidin-4-yl)-1H-1,2, 3-triazol-4-yl)-1, 2, 4-oxadiazol-5(4H)-one as antifungal agents, Bioorg. Med. Chem. Lett. 19 (2009) 3564-3567;

    29. [29]

      (c) J.N. Sangshetti, D.B. Shinde, One pot synthesis and SAR of some novel 3-substituted 5,6-diphenyl-1, 2, 4-triazines as antifungal agents, Bioorg. Med. Chem. Lett. 20 (2010) 742-745;

    30. [30]

      (d) J.N. Sangshetti, P.P. Dharmadhikari, R.S. Chouthe, et al., Microwave assisted nano (ZnO-TiO2) catalyzed synthesis of some new 4,5,6,7-tetrahydro-6-((5-substituted-1, 3,4-oxadiazol-2-yl)methyl)thieno[2,3-c] pyridine as antimicrobial agents, Bioorg. Med. Chem. Lett. 23 (2013) 2250-2253;

    31. [31]

      (e) Z. Zaheer, F.A.K. Khan, J.N. Sangshetti, R.H. Patil, Efficient one-pot synthesis, molecular docking and in silico ADME prediction of bis-(4-hydroxycoumarin-3-yl) methane derivatives as antileishmanial agents, EXCLI J. 14 (2015) 935-947.

    32. [32]

      [19] (a) J.N. Sangshetti, A.R. Chabukswar, D.B. Shinde, Microwave assisted one pot synthesis of some novel 2,5-disubstituted 1,3,4-oxadiazoles as antifungal agents, Bioorg. Med. Chem. Lett. 21 (2011) 444-448;

    33. [33]

      (b) J.N. Sangshetti, R.I. Shaikh, F.A.K. Khan, et al., Synthesis, antileishmanial activity and docking study of N'-substitutedbenzylidene-2-(6,7-dihydrothieno [3,2-c] pyridin-5(4H)-yl)acetohydrazides, Bioorg. Med. Chem. Lett. 24 (2014) 1605-1610;

    34. [34]

      (c) J.N. Sangshetti, F.A.K. Khan, R.S. Chouthe, M.G. Damale, D.B. Shinde, Synthesis, docking and ADMET prediction of novel 5-((5-substituted-1-H-1,2,4-triazol-3-yl) methyl)-4,5, 6,7-tetrahydrothieno[3,2-c] pyridine as antifungal agents, Chin. Chem. Lett. 25 (2014) 1033-1038;

    35. [35]

      (d) J.N. Sangshetti, F.A.K. Khan, R.H. Patil, et al., Biofilm inhibition of linezolid-like Schiff bases: synthesis, biological activity, molecular docking and in silico ADME prediction, Bioorg. Med. Chem. Lett. 25 (2015) 874-880;

    36. [36]

      (e) F.A.K. Khan, J.N. Sangshetti, Design, synthesis and molecular docking study of hybrid quinoline-4-YL-oxadiazoles/oxathiadiazoles as potent antifungal agents, Int. J. Pharm. Pharm. Sci. 7 (2015) 223-229.

    37. [37]

      [20] M. Silva, H.B. Napolitano, J. Ellena, et al., 3-(5,7-Dimethoxy-2,2-dimethyl-2Hbenzo[b] pyran-6-yl) propionic acid: a potential inhibitor against Leishmania, Acta Cryst. E59 (2003) o1575-o1577.

    38. [38]

      [21] A. Dutta, S. Bandyopadhyay, C. Mandal, M. Chatterjee, Development of a modified MTT assay for screening antimonial resistant field isolates of Indian visceral leishmaniasis, Parasitol. Int. 54 (2005) 119-122.

    39. [39]

      [22] M. Burits, F. Bucar, Antioxidant activity of Nigella sativa essential oil, Phytother. Res. 14 (2000) 323-328.

    40. [40]

      [23] F. Denizlt, R.T. Lang, Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability, J. Immunol. Methods 89 (1986) 271-277.

    41. [41]

      [24] VLife, Molecular Design Suite 4.3, VLife Sciences Technologies Pvt. Ltd, 2015 hwww.Vlifesciences.comi.

    42. [42]

      [25] C.L. Phillips, B. Ullman, R.G. Brennan, C.P. Hill, Crystal structures of adenine phosphoribosyltransferase from Leishmania donovani, EMBO J. 18 (1999) 3533-3545.

    43. [43]

      [26] C.A. Lipinski, L. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 46 (2001) 3-26.

    44. [44]

      [27] Molinspiration Chemoinformatics Brastislava, Slovak Republic, 2015 Available from hhttp://www.molinspiration.com/cgi-bin/propertiesi.

    45. [45]

      [28] Y.H. Zhao, M.H. Abraham, J. Le, et al., Rate-limited steps of human oral absorption and QSAR studies, Pharm. Res. 19 (2002) 1446-1457.

    46. [46]

      [29] J.C. Jung, Y.J. Jung, O.S. Park, A convenient one-pot synthesis of 4-hydroxycoumarin, 4-hydroxythiocoumarin, and 4-hydroxyquinolin-2(1H)-one, Synth. Commun. 31 (2001) 1195-1200.

    47. [47]

      [30] (a) M. Mohsenimehr, M. Mamaghani, F. Shirini, M. Sheykhan, F.A. Moghaddam, One-pot synthesis of novel pyrido[2,3-d] pyrimidines using HAp-encapsulated-γ-Fe2O3 supported sulfonic acid nanocatalyst under solvent-free conditions, Chin. Chem. Lett. 25 (2014) 1387-1391;

    48. [48]

      (b) J.N. Sangshetti, F.A.K. Khan, C.S. Kute, Z. Zaheer, R.Z. Ahmed, One-pot threecomponent synthesis of 3-(α-aminobenzyl)-4-hydroxycoumarin derivatives using nanocrystalline TiO2 as reusable catalyst, Russ. J. Org. Chem. 51 (2015) 69-73;

    49. [49]

      (c) M.A. Ameen, S.M. Motamed, F.F. Abdel-latif, Highly efficient one-pot synthesis of dihydropyran heterocycles, Chin. Chem. Lett. 25 (2014) 212-214;

    50. [50]

      (d) J.N. Sangshetti, F.A.K. Khan, R.S. Chouthe, Z. Zaheer, R.Z. Ahmed, Watermediated oxalic acid catalysed one-pot synthesis of 2-(substituted phenyl) phthalazin-1(2H)-ones, J. Taibah Univ. Sci. 9 (2015) 548-554.

    51. [51]

      [31] (a) B. Han, X.D. Jia, X.L. Jin, et al., A CAN-initiated aza-Diels-Alder reaction for a facile synthesis of 4-amido-N-yl tetrahydroquinolines, Tetrahedron Lett. 47 (2006) 3545-3547;

    52. [52]

      (b) J.N. Sangshetti, N.D. Kokare, S.A. Kotharkara, D.B. Shinde, Ceric ammonium nitrate catalysed three component one-pot efficient synthesis of 2,4,5-triaryl-1Himidazoles, J. Chem. Sci. 120 (2008) 463-467;

    53. [53]

      (c) A.P.G. Nikalje, M.S. Ghodke, F.A.K. Khan, J.N. Sangshetti, CAN catalyzed onepot synthesis and docking study of some novel substituted imidazole coupled 1,2,4-triazole-5-carboxylic acids as antifungal agents, Chin. Chem. Lett. 26 (2015) 108-112.

    54. [54]

      [32] B.D. Mather, K. Viswanathan, K.M. Miller, T.E. Long, Michael addition reactions in macromolecular design for emerging technologies, Prog. Polym. Sci. 31 (2006) 487-531.

    55. [55]

      [33] (a) IFPMA, Stability testing of new drug substances and drug products ICH Q1A (R2), in: International Conference on Harmonization, IFPMA, Geneva, 2003;

    56. [56]

      (b) K.K. Hotha, S. Phani, K. Reddy, V.K. Raju, L.K. Ravindranath, Forced degradation studies: practical approach-overview of regulatory guidance and literature for the drug products and drug substances, Int. Res. J. Pharm. 4 (2013) 78-85.

    57. [57]

      [34] M. Sankaran, C. Kumarasamy, U. Chokkalingam, P.S. Mohan, Synthesis, antioxidant and toxicological study of novel pyrimido quinoline derivatives from 4-hydroxy-3-acyl quinolin-2-one, Bioorg. Med. Chem. Lett. 20 (2010) 7147-7151.

    58. [58]

      [35] H.Y. Zhang, Structure-activity relationships and rational design strategies for radical-scavenging antioxidants, Curr. Comput. Aided Drug Des. 1 (2005) 257-273.

    59. [59]

      [36] R.W. Blakesley, Methods for preventing inhibition of nucleic acid synthesis by pyrophosphate, US6291164, 2001.

    60. [60]

      [37] P. Ertl, B. Rohde, P. Selzer, Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties, J. Med. Chem. 43 (2000) 3714-3717.

  • 加载中
    1. [1]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    2. [2]

      Hailang DengAbebe Reda WolduAbdul QayumZanling HuangWeiwei ZhuXiang PengPaul K. ChuLiangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892

    3. [3]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    4. [4]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    5. [5]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    6. [6]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    7. [7]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    8. [8]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    9. [9]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    10. [10]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    11. [11]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    12. [12]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    13. [13]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    14. [14]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    15. [15]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    16. [16]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

    17. [17]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    18. [18]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    19. [19]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    20. [20]

      Qi TanRun-Zhu FanWencong YangGe ZouTao ChenJianying WuBo WangSheng YinZhigang She . (+)/(−)-Mycosphatide A, a pair of highly oxidized polyketides with lipid-lowering activity from the mangrove endophytic fungus Mycosphaerella sp. SYSU-DZG01. Chinese Chemical Letters, 2024, 35(9): 109390-. doi: 10.1016/j.cclet.2023.109390

Metrics
  • PDF Downloads(0)
  • Abstract views(594)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return