Citation: Juan Liu, Jian Shen, Mian Li, Li-Ping Guo. A high-efficient amperometric hydrazine sensor based on novel electrospun CoFe2O4 spinel nanofibers[J]. Chinese Chemical Letters, ;2015, 26(12): 1478-1484. doi: 10.1016/j.cclet.2015.10.026 shu

A high-efficient amperometric hydrazine sensor based on novel electrospun CoFe2O4 spinel nanofibers

  • Corresponding author: Li-Ping Guo, 
  • Received Date: 28 August 2015
    Available Online: 27 October 2015

  • Heterojunction Fe2O3 nanoparticles (NPs), NiFe2O4 nanofibers (NFs), and CoFe2O4 NFs were synthesized by electrospinning and the subsequent thermal treatment processes. Characterization results indeed display the three-dimensional net-like textural structures of these as-electrospun spinel-type MFe2O4 NFs. The MFe2O4 NFs-based film configurations possess abundant micro/meso/macropores on their surface. These structures could afford more accessible transport channels for effective reduction of the mass transport resistance and improvement of the density of exposed catalytic active sites. All these advantages are responsible for the enhanced electro-catalytic performance of these MFe2O4 NFs in hydrazine oxidation. When used for hydrazine detection, CoFe2O4 NFs show the best catalytic efficiency. For example, the CoFe2O4 NFs possess a large sensitivity of 1327 μA cm-2 (mmol L-1)-1 in the linear range of 0.01 to 0.1 mmol L-1 and 503 μA cm-2 (mmol L-1) 1 in the linear range of 0.1 to 11 mmol L 1, a response time of shorter than 3 s, good reproducibility and remarkable long-term stability. The superior catalytic efficiency, excellent stability, low cost, and ease of fabrication render CoFe2O4 NFs very promising materials in developing an electrochemical device that directly detects hydrazine.
  • 加载中
    1. [1]

      [1] M. Li, L. Liu, Y. Xiong, et al., Bimetallic MCo (M = Cu, Fe, Ni, and Mn) nanoparticles doped-carbon nanofibers synthetized by electrospinning for nonenzymatic glucose detection, Sens. Actuators, B: Chem. 207 (2015) 614-622.

    2. [2]

      [2] M. Li, Y. Xiong, X. Liu, et al., Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction, Nanoscale 7 (2015) 8920-8930.

    3. [3]

      [3] M. Li, C. Han, Y. Zhang, X. Bo, L. Guo, Facile synthesis of ultrafine Co3O4 nanocrystals embedded carbon matrices with specific skeletal structures as efficient non-enzymatic glucose sensors, Anal. Chim. Acta 861 (2015) 25-35.

    4. [4]

      [4] C.C. Kuo, W.J. Lan, C.H. Chen, Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials: highly efficient noble metal-free electrocatalysts for sensing hydrogen peroxide, Nanoscale 6 (2014) 334-341.

    5. [5]

      [5] H. Zhu, S. Zhang, Y.X. Huang, L. Wu, S. Sun, Monodisperse MxFe3-xO4 (M = Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction, Nano Lett. 13 (2013) 2947-2951.

    6. [6]

      [6] D. Yu, J. Yao, L. Qiu, et al., In situ growth of Co3O4 nanoparticles on alpha-MnO2 nanotubes: a new hybrid for high-performance supercapacitors, J. Mater. Chem. A 2 (2014) 8465-8471.

    7. [7]

      [7] A. Afkhami, H. Khoshsafar, H. Bagheri, T. Madrakian, Preparation of NiFe2O4/ graphene nanocomposite and its application as a modifier for the fabrication of an electrochemical sensor for the simultaneous determination of tramadol and acetaminophen, Anal. Chim. Acta 831 (2014) 50-59.

    8. [8]

      [8] L. Luo, Y. Zhang, F. Li, et al., Enzyme mimics of spinel-type CoxNi1-xFe2O4 magnetic nanomaterial for eletroctrocatalytic oxidation of hydrogen peroxide, Anal. Chim. Acta 788 (2013) 46-51.

    9. [9]

      [9] L. Li, Y.Q. Zhang, X.Y. Liu, et al., One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage, Electrochim. Acta 116 (2014) 467-474.

    10. [10]

      [10] C.L. Zhang, S.H. Yu, Nanoparticles meet electrospinning: recent advances and future prospects, Chem. Soc. Rev. 43 (2014) 4423-4448.

    11. [11]

      [11] J. Huang, D. Wang, H. Hou, T. You, Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH, Adv. Funct. Mater. 18 (2008) 441-448.

    12. [12]

      [12] G. Wang, Q. Dong, Z. Ling, et al., Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization, J. Mater. Chem. 22 (2012) 21819-21823.

    13. [13]

      [13] R. Pauliukaite, S.B. Hocevar, E.A. Hutton, B. Ogorevc, Novel electrochemical microsensor for hydrogen peroxide based on iron-ruthenium hexacyanoferrate modified carbon fiber electrode, Electroanalysis 20 (2008) 47-53.

    14. [14]

      [14] M.U.A. Prathap, V. Anuraj, B. Satpati, R. Srivastava, Facile preparation of Ni(OH)2- MnO2 hybrid material and its application in the electrocatalytic oxidation of hydrazine, J. Hazard. Mater. 262 (2013) 766-774.

    15. [15]

      [15] X. Cao, N. Wang, A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays, Analyst 136 (2011) 4241-4246.

    16. [16]

      [16] Z. Zhang, Y. Wang, M. Zhang, et al., Mesoporous CoFe2O4 nanospheres crosslinked by carbon nanotubes as high-performance anodes for lithium-ion batteries, J. Mater. Chem. A 1 (2013) 7444-7450.

    17. [17]

      [17] M. Li, X. Bo, Y. Zhang, et al., Cobalt and nitrogen co-embedded onion-like mesoporous carbon vesicles as efficient catalysts for oxygen reduction reaction, J. Mater. Chem. A 2 (2014) 11672-11682.

    18. [18]

      [18] B. Fang, Y. Feng, M. Liu, et al., Electrocatalytic oxidation of hydrazine at a glassy carbon electrode modified with nickel ferrite and multi-walled carbon nanotubes, Microchim. Acta 175 (2011) 145-150.

    19. [19]

      [19] M. Kamyabi, O. Narimani, H.H. Monfared, Electrocatalytic oxidation of hydrazine using glassy carbon electrode modified with carbon nanotube and terpyridine manganese(II) complex, J. Electroanal. Chem. 644 (2010) 67-73.

    20. [20]

      [20] J. Li, X. Lin, Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticle—polypyrrole nanowire modified glassy carbon electrode, Sens. Actuators, B: Chem. 126 (2007) 527-535.

    21. [21]

      [21] Y. Ni, J. Zhu, L. Zhang, J. Hong, Hierarchical ZnO micro/nanoarchitectures: hydrothermal preparation, characterization and application in the detection of hydrazine, CrystEngComm 12 (2010) 2213-2218.

    22. [22]

      [22] G. Wang, A. Gu, W. Wang, et al., Copper oxide nanoarray based on the substrate of Cu applied for the chemical sensor of hydrazine detection, Electrochem. Commun. 11 (2009) 631-634.

    23. [23]

      [23] J. Zheng, Q. Sheng, L. Li, Y. Shen, Bismuth hexacyanoferrate-modified carbon ceramic electrodes prepared by electrochemical deposition and its electrocatalytic activity towards oxidation of hydrazine, J. Electroanal. Chem. 611 (2007) 155-161.

    24. [24]

      [24] J. Zhang, H. Liu, M. Dou, et al., Synthesis and characterization of Co3O4/multiwalled carbon nanotubes nanocomposite for amperometric sensing of hydrazine, Electroanalysis 27 (2015) 1188-1194.

    25. [25]

      [25] K.K. Lee, P.Y. Loh, C.H. Sow, W.S. Chin, CoOOH nanosheet electrodes: simple fabrication for sensitive electrochemical sensing of hydrogen peroxide and hydrazine, Biosens. Bioelectron. 39 (2013) 255-260.

    26. [26]

      [26] L. Zheng, J.F. Song, Ni(II)-baicalein complex modified multi-wall carbon nanotube paste electrode toward electrocatalytic oxidation of hydrazine, Talanta 79 (2009) 319-326.

    27. [27]

      [27] G. Chang, Y. Luo, W. Lu, et al., Immobilization of Au nanoparticles on Au electrode for hydrazine detection: using thiolated single-stranded DNA as a linker, Thin Solid Films 519 (2011) 6130-6134.

    28. [28]

      [28] S. Shukla, S. Chaudhary, A. Umar, G.R. Chaudhary, S. Mehta, Tungsten oxide (WO3) nanoparticles as scaffold for the fabrication of hydrazine chemical sensor, Sens. Actuators, B: Chem. 196 (2014) 231-237.

    29. [29]

      [29] B.Šljukić, C.E. Banks, A. Crossley, R.G. Compton, Iron(III) oxide graphite composite electrodes: application to the electroanalytical detection of hydrazine and hydrogen peroxide, Electroanalysis 18 (2006) 1757-1762.

  • 加载中
    1. [1]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    2. [2]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    3. [3]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

Metrics
  • PDF Downloads(0)
  • Abstract views(576)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return