Citation: Wen-Zhu Zhang, Zhong-Bo Du, Bo Song, Zhi-Qiang Ye, Jing-Li Yuan. Development of a triple channel detection probe for hydrogen peroxide[J]. Chinese Chemical Letters, ;2015, 26(12): 1465-1469. doi: 10.1016/j.cclet.2015.10.022 shu

Development of a triple channel detection probe for hydrogen peroxide

  • Corresponding author: Zhi-Qiang Ye, 
  • Received Date: 17 August 2015
    Available Online: 27 October 2015

  • The rapid and reliable measurement of hydrogen peroxide (H2O2) is imperative for many areas of technology, including pharmaceutical, clinical, food industry and environmental applications. In this work, a novel multifunctional complex, [Ru(bpy)2(luminol-bpy)](PF6)2 (bpy: 2,20'-bipyridine), was designed and synthesized by incorporating a Ru(II) complex with a luminal group. In the presence of horseradish peroxidase (HRP), reaction of [Ru(bpy)2(luminol-bpy)]2+ with H2O2 can be monitored by three sensing channels including photoluminescence (PL), chemiluminiscence (CL) and eletrochemiluminiscence (ECL). The quantitative assays for H2O2 in aqueous solutions using [Ru(bpy)2(Luminalbpy)]( PF6)2 as a probe were established with PL, ECL and CL signal output modes, respectively.
  • 加载中
    1. [1]

      [1] B. Autreaux, M.B. Toledano, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis, Nat. Rev. Mol. Cell Biol. 8 (2007) 813-824.

    2. [2]

      [2] C.C. Winterbourn, Reconciling the chemistry and biology of reactive oxygen species, Nat. Chem. Biol. 4 (2008) 278-286.

    3. [3]

      [3] H. Chen, H. Wang, X.J. Qin, et al., A bestatin-based fluorescent probe for aminopeptidase N cell imaging, Chin. Chem. Lett. 26 (2015) 513-516.

    4. [4]

      [4] F.Y. Zhang, Z.H. Wang, Y.Z. Zhang, et al., Simultaneous electrochemical determination of uric acid, xanthine and hypoxanthine based on poly(L-arginine)/graphene composite film modified electrode, Talanta 93 (2012) 320-325.

    5. [5]

      [5] F. Wen, Y.H. Dong, L. Feng, et al., Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing, Anal. Chem. 83 (2011) 1193-1196.

    6. [6]

      [6] K. Hirakawa, Fluorometry of hydrogen peroxide using oxidative decomposition of folic acid, Anal. Bioanal. Chem. 386 (2006) 244-248.

    7. [7]

      [7] K. Wang, Q. Liu, X.Y. Wu, et al., Graphene enhanced electrochemiluminescence of CdS nanocrystal for H2O2 sensing, Talanta 82 (2010) 372-376.

    8. [8]

      [8] A. Tahirović, A.Có pra, E. Omanović-Miklicanin, et al., A chemiluminescence sensor for the determination of hydrogen peroxide, Talanta 72 (2007) 1378-1385.

    9. [9]

      [9] L.B. Zhang, S.R. Yang, J.Q. Wang, et al., A facile preparation and electrochemical properties of nickel based compound-graphene sheet composites for supercapacitors, Chin. Chem. Lett. 26 (2015) 522-528.

    10. [10]

      [10] J.J. Zhang, Y.G. Liu, L.P. Jiang, et al., Synthesis, characterizations of silica-coated gold nanorods and its applications in electroanalysis of hemoglobin, Electrochem. Commun. 10 (2008) 355-358.

    11. [11]

      [11] J.P. Li, Y.P. Li, G. Wei, et al., Highly sensitive molecularly imprinted electrochemical sensor based on the double amplification by an inorganic prussian blue catalytic polymer and the enzymatic effect of glucose oxidase, Anal. Chem. 84 (2012) 1888-1893.

    12. [12]

      [12] S.Y. Xu, B. Peng, X.Z. Han, A third-generation H2O2 biosensor based on horseradish peroxidase-labeled Au nanoparticles self-assembled to hollow porous polymeric nanopheres, Biosens. Bioelectron. 22 (2007) 1807-1810.

    13. [13]

      [13] M.C.Y. Chang, A. Pralle, E.Y. Isacoff, C.J. Chang, A selective, cell-permeable optical probe for hydrogen peroxide in living cells, J. Am. Chem. Soc. 126 (2004) 15392-15393.

    14. [14]

      [14] E.W. Miller, A.E. Albers, A. Pralle, et al., Boronate-based fluorescent probes for imaging cellular hydrogen peroxide, J. Am. Chem. Soc. 127 (2005) 16652-16659.

    15. [15]

      [15] D. Srikun, E.w. Miller, D.W. Domaille, et al., An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells, J. Am. Chem. Soc. 130 (2008) 4596-4597.

    16. [16]

      [16] B.C. Dickinson, C.J. Chang, A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells, J. Am. Chem. Soc. 130 (2008) 9638-9639.

    17. [17]

      [17] E.W. Miller, O. Tulyathan, E.Y. Isacoff, et al., Molecular imaging of hydrogen peroxide produced for cell signaling, J. Nat. Chem. Biol. 3 (2007) 263-267.

    18. [18]

      [18] L.X. Zhao, L. Sun, X.G. Chu, Chemiluminescence immunoassay, TrAC: Trends Anal. Chem. 28 (2009) 404-415.

    19. [19]

      [19] R. Zhang, B. Song, Z.Q. Ye, et al., Highly sensitive and selective phosphorescent chemosensors for hypochlorous acid based on ruthenium(II) complexes, Biosens. Bioelectron. 50 (2013) 1-7.

    20. [20]

      [20] W.Z. Zhang, R. Zhang, Z.Q. Ye, et al., Photoluminescent and electrochemiluminescent dual-signaling probe for bio-thiols based on a ruthenium(II) complex, Anal. Chim. Acta 740 (2012) 80-87.

    21. [21]

      [21] D.M. Josefina, F. Oscar, E. Roberto, A ruthenium-rhodamine complex as an activatable fluorescent probe, Anal. Chem. 82 (2010) 6259-6264.

    22. [22]

      [22] S.H. Fan, J. Shen, H. Wu, et al., A highly selective turn-on colorimetric and luminescence sensor based on a triphenylamine-appended ruthenium(II) dye for detecting mercury ion, Chin. Chem. Lett. 26 (2015) 580-584.

    23. [23]

      [23] B.T. Tamaddoni, A.N. Kharat, S. Zamanian, Chiral electron deficient ruthenium helical coordination polymer as a catalyst for the epoxidation of substituted styrenes, Chin. Chem. Lett. 26 (2015) 137-140.

    24. [24]

      [24] X. Huang, J. Ren, Gold nanoparticles based chemiluminescent resonance energy transfer for immunoassay of alpha fetoprotein canace marker, Anal. Chim. Acta 686 (2011) 115-120.

  • 加载中
    1. [1]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    2. [2]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    3. [3]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    4. [4]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    5. [5]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    6. [6]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    7. [7]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    8. [8]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    9. [9]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    10. [10]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    11. [11]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    12. [12]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    13. [13]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    14. [14]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    15. [15]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

    16. [16]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2024.100195

    17. [17]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    18. [18]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    19. [19]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    20. [20]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

Metrics
  • PDF Downloads(0)
  • Abstract views(598)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return