Citation: Ting Yang, Yi-Kun Li, Ming-Li Chen, Jian-Hua Wang. Supported carbon dots decorated with metallothionein for selective cadmium adsorption and removal[J]. Chinese Chemical Letters, ;2015, 26(12): 1496-1501. doi: 10.1016/j.cclet.2015.10.018 shu

Supported carbon dots decorated with metallothionein for selective cadmium adsorption and removal

  • Corresponding author: Ming-Li Chen,  Jian-Hua Wang, 
  • Received Date: 29 July 2015
    Available Online: 27 October 2015

  • Carbon dots are prepared and immobilized onto spherical SiO2 through a one-step thermal oxidation and then decorated with metallothionein (MT), a protein with high affinity towards thiophilic metals. The MT-carbon dots composites are characterized by means of FT-IR, SEM and TGA, giving rise to a MT loading amount of 823 μg g-1. The adsorption of cadmium by the composites is a fast process and follows Langmuir model. In comparison with native SiO2, a 2- and 2.4-folds improvement on the static and dynamic adsorption capacity of the composites for cadmium are obtained, respectively. Moreover, the adsorption efficiency is not affected by the presence of other metals. Finally, the composites are successfully applied for the removal of cadmium in a series of environmental water samples.
  • 加载中
    1. [1]

      [1] M. Khairy, S.A. El-Safty, M.A. Shenashen, Environmental remediation and monitoring of cadmium, TrAC Trend. Anal. Chem. 62 (2014) 56-68.

    2. [2]

      [2] A. Varriale, M. Staiano, M. Rossi, S. D'Auria, High-affinity binding of cadmium ions by mouse metallothionein prompting the design of a reversed-displacement protein-based fluorescence biosensor for cadmium detection, Anal. Chem. 79 (2007) 5760-5762.

    3. [3]

      [3] R. Kumar, J. Chawla, Removal of cadmium ion from water/wastewater by nano-metal oxides: a review, Water Qual. Exposure Health 5 (2014) 215- 226.

    4. [4]

      [4] B.A. Fowler, Monitoring of human populations for early markers of cadmium toxicity: a review, Toxicol. Appl. Pharmacol. 238 (2009) 294-300.

    5. [5]

      [5] WHO, Guidelines for Drinking Water Quality: Recommendations, WHO, Geneva, 2008, pp. 317-318.

    6. [6]

      [6] EPA, The Provision and Quality of Drinking Water in Ireland: A Report for the Year 2008-2009, EPA, 2008p. 102.

    7. [7]

      [7] L.M. Ravelo-Pé rez, A.V. Herrera-Herrera, J. Herná ndez-Borges, M.Á . Rodríguez- Delgado, Carbon nanotubes: solid-phase extraction, J. Chromatogr. A 1217 (2010) 2618-2641.

    8. [8]

      [8] G.P. Rao, C. Lu, F. Su, Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review, Sep. Purif. Technol. 58 (2007) 224-231.

    9. [9]

      [9] M. Musameh, M. Hickey, I. Kyratzis, Carbon nanotube-based extraction and electrochemical detection of heavy metals, Res. Chem. Intermed. 37 (2011) 675-689.

    10. [10]

      [10] R. Kumar, J. Chawla, I. Kaur, Removal of cadmium ion from wastewater by carbonbased nanosorbents: a review, J. Water Health 13 (2015) 18-33.

    11. [11]

      [11] R. Kumar, M.A. Khan, N. Haq, Application of carbon nanotubes in heavy metals remediation, Crit. Rev. Environ. Sci. Technol. 44 (2013) 1000-1035.

    12. [12]

      [12] G.Z. Kyzas, E.A. Deliyanni, K.A. Matis, Graphene oxide and its application as an adsorbent for wastewater treatment, J. Chem. Technol. Biotechnol. 89 (2014) 196-205.

    13. [13]

      [13] Y. Cao, X. Li, Adsorption of graphene for the removal of inorganic pollutants in water purification: a review, Adsorption 20 (2014) 713-727.

    14. [14]

      [14] M. Yusuf, F.M. Elfghi, S.A. Zaidi, E.C. Abdullah, M.A. Khan, Applications of graphene and its derivatives as an adsorbent for heavy metal and dye removal: a systematic and comprehensive overview, RSC Adv. 5 (2015) 50392-50420.

    15. [15]

      [15] Y.H. Li, S. Wang, Z. Luan, et al., Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes, Carbon 41 (2003) 1057-1062.

    16. [16]

      [16] G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management, Environ. Sci. Technol. 45 (2011) 10454-10462.

    17. [17]

      [17] Q. Liu, J. Shi, M. Cheng, et al., Preparation of graphene-encapsulated magnetic microspheres for protein/peptide enrichment and MALDI-TOF MS analysis, Chem. Commun. 48 (2012) 1874-1876.

    18. [18]

      [18] J.W. Liu, Q. Zhang, X.W. Chen, J.H. Wang, Surface assembly of graphene oxide nanosheets on SiO2 particles for the selective isolation of hemoglobin, Chem.— Eur. J. 17 (2011) 4864-4870.

    19. [19]

      [19] Y.H. Li, J. Ding, Z. Luan, et al., Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes, Carbon 41 (2003) 2787-2792.

    20. [20]

      [20] R. Sitko, E. Turek, B. Zawisza, et al., Adsorption of divalent metal ions from aqueous solutions using graphene oxide, Dalton Trans. 42 (2013) 5682-5689.

    21. [21]

      [21] C.D. Klaassen, J. Liu, S. Choudhuri, Metallothionein: an intracellular protein to protect against cadmium toxicity, Annu. Rev. Pharmacol. Toxicol. 39 (1999) 267- 294.

    22. [22]

      [22] T. Yang, L.H. Liu, J.W. Liu, M.L. Chen, J.H. Wang, Cyanobacterium metallothionein decorated graphene oxide nanosheets for highly selective adsorption of ultratrace cadmium, J. Mater. Chem. 22 (2012) 21909-21916.

    23. [23]

      [23] H. Li, Z. Kang, Y. Liu, S.-T. Lee, Carbon nanodots: synthesis, properties and applications, J Mater. Chem. 22 (2012) 24230-24253.

    24. [24]

      [24] S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications, Chem. Soc. Rev. 44 (2015) 362-381.

    25. [25]

      [25] A.B. Bourlinos, A. Stassinopoulos, D. Anglos, et al., Photoluminescent carbogenic dots, Chem. Mater. 20 (2008) 4539-4541.

    26. [26]

      [26] G.L. Ellman, Tissue sulfhydryl groups, Arch. Biochem. Biophys. 82 (1959) 70-77.

    27. [27]

      [27] M. Capdevila, R. Bofill, Ò . Palacios, S. Atrian, State-of-the-art of metallothioneins at the beginning of the 21st century, Coord. Chem. Rev. 256 (2012) 46-62.

  • 加载中
    1. [1]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    2. [2]

      Chenghao LiuXiaofeng LinJing LiaoMin YangMin JiangYue HuangZhizhi DuLina ChenSanjun FanQitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598

    3. [3]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

    4. [4]

      Yuan LiuBoyang WangYaxin LiWeidong LiSiyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426

    5. [5]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    6. [6]

      Rui ChengTingting ZhangXin HuangJian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763

    7. [7]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    8. [8]

      Qiang LiJiangbo FanHongkai MuLin ChenYongzhen YangShiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947

    9. [9]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    10. [10]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    11. [11]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    12. [12]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    13. [13]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    14. [14]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    15. [15]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    16. [16]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    17. [17]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    18. [18]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    19. [19]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    20. [20]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

Metrics
  • PDF Downloads(0)
  • Abstract views(629)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return