Citation: Suresh Kumar Chakkarapani, Guenyoung Park, Seong Ho Kang. Base pair distance analysis in single DNA molecule by direct stochastic optical reconstruction microscopy[J]. Chinese Chemical Letters, ;2015, 26(12): 1490-1495. doi: 10.1016/j.cclet.2015.10.017 shu

Base pair distance analysis in single DNA molecule by direct stochastic optical reconstruction microscopy

  • Corresponding author: Seong Ho Kang, 
  • Received Date: 29 May 2015
    Available Online: 21 October 2015

  • Precise fluorescence imaging of single λ-DNA molecules for base pair distance analysis requires a superresolution technique, as these distances are on the order of diffraction limit. Individual λ-DNA molecules intercalated with the fluorescent dye YOYO-1 were investigated at subdiffraction spatial resolution by direct stochastic optical reconstructionmicroscopy (dSTORM). Various dye-to-DNA base pair ratios were imaged by photoswitching YOYO-1 between the fluorescent state and the dark state using two laser sources. The acquired images were reconstructed into a super-resolution image by applying Gaussian fitting to the centroid of the point spread function. By measuring the distances between localized fluorophores, the base pair distances in single DNA molecules for dye-to-DNA base pair ratios of 1:50, 1:100, and 1:500 were calculated to be 17.1±0.8 nm, 34.3±2.2 nm, and 170.3±8.1 nm, respectively, which were in agreement with theoretical values. These results demonstrate that intercalating dye in a single DNA molecule can be photoswitched without the use of an activator fluorophore, and that super-localization precision at a spatial resolution of ~17 nm was experimentally achieved.
  • 加载中
    1. [1]

      [1] M.D. Barnes, W.B. Whitten, J.M. Ramsey, Detecting single molecules in liquids, Anal. Chem. 67 (1995) 418A-423A.

    2. [2]

      [2] S.H. Kang, S. Lee, E.S. Yeung, Detection of single enzyme molecules inside nanopores on the basis of chemiluminescence, Angew. Chem. Int. Ed. 49 (2010) 2603-2606.

    3. [3]

      [3] S. Howorka, J. Hesse, Microarrays and single molecules: an exciting combination, Soft Matter 10 (2014) 931-941.

    4. [4]

      [4] D.O. Clary, D.R. Wolstenholme, The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code, J. Mol. Evol. 22 (1985) 252-271.

    5. [5]

      [5] S.H. Kang, S. Lee, E.S. Yeung, Digestion of individual DNA molecules by lexonuclease at liquid-solid interface, Analyst 135 (2010) 1759-1764.

    6. [6]

      [6] B.H. Chen, L.A. Gilbert, B.A. Cimini, et al., Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system, Cell 155 (2013) 1479-1491.

    7. [7]

      [7] A.S. Stender, K. Marchuk, C. Liu, et al., Single cell optical imaging and spectroscopy, Chem. Rev. 113 (2013) 2469-2527.

    8. [8]

      [8] Z.Y. Tian, A.D.Q. Li, Photoswitching-enabled novel optical imaging: innovative solutions for real-world challenges in fluorescence detections, Acc. Chem. Res. 46 (2013) 269-279.

    9. [9]

      [9] E. Betzig, G.H. Patterson, R. Sougrat, et al., Imaging intracellular fluorescent proteins at nanometer resolution, Science 313 (2006) 1642-1645.

    10. [10]

      [10] S.T. Hess, T.P.K. Girirajan, M.D. Mason, Ultra-high resolution imaging by fluorescence photoactivation localization microscopy, Biophys. J. 91 (2006) 4258-4272.

    11. [11]

      [11] M. Bates, B. Huang, G.T. Dempsey, X.W. Zhuang, Multicolor super-resolution imaging with photo-switchable fluorescent probes, Science 317 (2007) 1749-1753.

    12. [12]

      [12] M.J. Rust, M. Bates, X.W. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods 3 (2006) 793-796.

    13. [13]

      [13] M. Heilemann, S. van de Linde, M. Schü ttpelz, et al., Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes, Angew. Chem. Int. Ed. 47 (2008) 6172-6176.

    14. [14]

      [14] M. Heilemann, S. van de Linde, A. Mukherjee, M. Sauer, Super-resolution imaging with small organic fluorophores, Angew. Chem. Int. Ed. 48 (2009) 6903-6908.

    15. [15]

      [15] N.R. Conley, J.S. Biteen, W.E. Moerner, Cy3-Cy5 covalent heterodimers for singlemolecule photoswitching, J. Phys. Chem. B 112 (2008) 11878-11880.

    16. [16]

      [16] G.T. Dempsey, M. Bates, W.E. Kowtoniuk, et al., Photoswitching mechanism of cyanine dyes, J. Am. Chem. Soc. 131 (2009) 18192-18193.

    17. [17]

      [17] G.T. Dempsey, J.C. Vaughan, K.H. Chen, M. Bates, X.W. Zhuang, Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging, Nat. Methods 8 (2011) 1027-1036.

    18. [18]

      [18] A. Yildiz, J.N. Forkey, S.A. McKinney, et al., Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization, Science 300 (2003) 2061-2065.

    19. [19]

      [19] LifeTechnologies, https://www.lifetechnologies.com/order/catalog/product/ Y3601, (accessed February 2015).

    20. [20]

      [20] C. Flors, C.N.J. Ravarani, D.T.F. Dryden, Super-resolution imaging of DNA labelled with intercalating dyes, ChemPhysChem 10 (2009) 2201-2204.

    21. [21]

      [21] C. Flors, Photoswitching of monomeric and dimeric DNA-intercalating cyanine dyes for super-resolution microscopy applications, Photochem. Photobiol. Sci. 9 (2010) 643-648.

    22. [22]

      [22] S.H. Kang, M.R. Shortreed, E.S. Yeung, Real-time dynamics of single-DNA molecules undergoing adsorption and desorption at liquid-solid interfaces, Anal. Chem. 73 (2001) 1091-1099.

    23. [23]

      [23] QuickPALM, http://rsbweb.nih.gov/ij/, (accessed February 2015).

    24. [24]

      [24] L.S. Lerman, Structural considerations in the interaction of DNA and acridines, J. Mol. Biol. 3 (1961) 18-30.

    25. [25]

      [25] R.E. Thompson, D.R. Larson, W.W. Webb, Precise nanometer localization analysis for individual fluorescent probes, Biophys. J. 82 (2002) 2775-2783.

    26. [26]

      [26] C. Höppener, L. Novotny, Exploiting the light-metal interaction for biomolecular sensing and imaging, Q. Rev. Biophys. 45 (2012) 209-255.

    27. [27]

      [27] K. Gü nther, M. Mertig, R. Seidel, Mechanical and structural properties of YOYO-1 complexed DNA, Nucl. Acids Res. 38 (2010) 6526-6532.

    28. [28]

      [28] C. Carlsson, M. Jonsson, B. Akerman, Double bands in DNA gel electrophoresis caused by bis-intercalating dyes, Nucl. Acids Res. 23 (1995) 2413-2520.

    29. [29]

      [29] S. van de Linde, A. Lö schberger, T. Klein, et al., Direct stochastic optical reconstruction microscopy with standard fluorescent probes, Nat. Protocols 6 (2011) 991-1009.

    30. [30]

      [30] D. Bar-On, S. Wolter, S. van de Linde, et al., Super-resolution imaging reveals the internal architecture of nano-sized syntaxin clusters, J. Biol. Chem. 287 (2012) 27158-27167.

    31. [31]

      [31] S. van de Linde, M. Sauer, M. Heilemann, Subdiffraction-resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores, J. Struct. Biol. 164 (2008) 250-254.

  • 加载中
    1. [1]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    2. [2]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    3. [3]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    4. [4]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    5. [5]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    6. [6]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    7. [7]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    8. [8]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    9. [9]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    10. [10]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    11. [11]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    12. [12]

      Fanghua ZhangYuyan LiHongyan ZhangWendong LiuZhe HaoMingzheng ShaoRuizhong ZhangXiyan LiLibing Zhang . Logically integrating exo/endogenous gated DNA trackers for precise microRNA imaging via synergistic manipulation. Chinese Chemical Letters, 2025, 36(1): 109848-. doi: 10.1016/j.cclet.2024.109848

    13. [13]

      Kun LiuYulin CongXiongfeng LuoMeicun YaoZhiyong XieHao Li . Utilizing bivalent aptamers as first DNA agonist to activate RTKs heterodimer of different families. Chinese Chemical Letters, 2025, 36(1): 109839-. doi: 10.1016/j.cclet.2024.109839

    14. [14]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    15. [15]

      Gaojian YangZhiyang LiRabia UsmanZhu ChenYuan LiuSong LiHui ChenYan DengYile FangNongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930

    16. [16]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

Metrics
  • PDF Downloads(0)
  • Abstract views(643)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return