Citation: Chun-Guang Yang, Ru-Yi Pan, Zhang-Run Xu. A single-cell encapsulation method based on a microfluidic multi-step droplet splitting system[J]. Chinese Chemical Letters, ;2015, 26(12): 1450-1454. doi: 10.1016/j.cclet.2015.10.016 shu

A single-cell encapsulation method based on a microfluidic multi-step droplet splitting system

  • Corresponding author: Zhang-Run Xu, 
  • Received Date: 16 June 2015
    Available Online: 19 August 2015

  • Single cell analysis is of great significance to understand the physiological activity of organisms. Microfluidic droplet is an ideal analytical platform for single-cell analysis. We developed a microfluidic droplet splitting system integrated with a flow-focusing structure and multi-step splitting structures to form 8-line droplets and encapsulate single cells in the droplets. Droplet generation frequency reached 1021 Hz with the aqueous phase flow rate of 1 μL/min and the oil phase flow rate of 15 μL/min. Relative standard deviation of the droplet size was less than 5% in a single channel, while less than 6% in all the 8 channels. The system was used for encapsulating human whole blood cells. A single-cell encapsulation efficiency of 31% was obtained with the blood cell concentration of 2.5×104 cells/μL, and the multicellular droplet percentage was only 1.3%. The multi-step droplet splitting system for single cell encapsulation featured simple structure and high throughput.
  • 加载中
    1. [1]

      [1] M.E. Lidstrom, D.R. Meldrum, Life-on-a-chip, Nat. Rev. Microbiol. 1 (2003) 158-164.

    2. [2]

      [2] A. Manz, N. Graber, H.M. Widmer, Miniaturized total chemical analysis systems: a novel concept for chemical sensing, Sens. Actuators, B: Chem. 1 (1990) 244-248.

    3. [3]

      [3] R.N. Zare, S. Kim, Microfluidic platforms for single-cell analysis, Annu. Rev. Biomed. Eng. 12 (2010) 187-201.

    4. [4]

      [4] Y. Liu, A.K. Singh, Microfluidic platforms for single-cell protein analysis, JALA 18 (2013) 446-454.

    5. [5]

      [5] A.M. Thompson, A.L. Paguirigan, J.E. Kreutz, et al., Microfluidics for single-cell genetic analysis, Lab Chip 14 (2014) 3135-3142.

    6. [6]

      [6] M.Y. He, J.S. Edgar, G.D.M. Jeffries, et al., Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets, Anal. Chem. 77 (2005) 1539-1544.

    7. [7]

      [7] S.K. Fan, P.W. Huang, T.T. Wang, et al., Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting, Lab Chip 8 (2008) 1325-1331.

    8. [8]

      [8] U. Demirci, G. Montesano, Single cell epitaxy by acoustic picolitre droplets, Lab Chip 7 (2007) 1139-1145.

    9. [9]

      [9] Y. Zeng, R. Novak, J. Shuga, et al., High-performance single cell genetic analysis using microfluidic emulsion generator arrays, Anal. Chem. 82 (2010) 3183-3190.

    10. [10]

      [10] S.Q. Gu, Y.X. Zhang, Y. Zhu, et al., Multifunctional picoliter droplet manipulation platform and its application in single cell analysis, Anal. Chem. 83 (2011) 7570-7576.

    11. [11]

      [11] S. Koester, F.E. Angile, H. Duan, et al., Drop-based microfluidic devices for encapsulation of single cells, Lab Chip 8 (2008) 1110-1115.

    12. [12]

      [12] E. Um, S.G. Lee, J.K. Park, Random breakup of microdroplets for single-cell encapsulation, Appl. Phys. Lett. 97 (2010) 153703-1-153703-3.

    13. [13]

      [13] M. Chabert, J.L. Viovy, Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells, Proc. Natl. Acad. Sci. U.S.A. 105 (2008) 3191-3196.

    14. [14]

      [14] J. Clausell-Tormos, D. Lieber, J.C. Baret, et al., Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms, Chem. Biol. 15 (2008) 427-437.

    15. [15]

      [15] J.F. Edd, D. Di Carlo, K.J. Humphry, et al., Controlled encapsulation of single-cells into monodisperse picolitre drops, Lab Chip 8 (2008) 1262-1264.

    16. [16]

      [16] E.W.M. Kemna, R.M. Schoeman, F. Wolbers, et al., High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel, Lab Chip 12 (2012) 2881-2887.

    17. [17]

      [17] D.R. Link, S.L. Anna, D.A. Weitz, et al., Geometrically mediated breakup of drops in microfluidic devices, Phys. Rev. Lett. 92 (2004) 054503-1-054503-4.

    18. [18]

      [18] C.G. Yang, Z.R. Xu, A.P. Lee, et al., A microfluidic concentration-gradient droplet array generator for the production of multi-color nanoparticles, Lab Chip 13 (2013) 2815-2820.

    19. [19]

      [19] A.R. Abate, D.A. Weitz, Faster multiple emulsification with drop splitting, Lab Chip 11 (2011) 1911-1915.

    20. [20]

      [20] J.C. McDonald, D.C. Duffy, J.R. Anderson, et al., Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis 21 (2000) 27-40.

    21. [21]

      [21] H. Song, J.D. Tice, R.F. Ismagilov, A microfluidic system for controlling reaction networks in time, Angew. Chem. Int. Ed. 42 (2003) 768-772.

    22. [22]

      [22] D. Di Carlo, D. Irimia, R.G. Tompkins, et al., Continuous inertial focusing, ordering, and separation of particles in microchannels, Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 18892-18897.

    23. [23]

      [23] C.G. Yang, Z.R. Xu, J.H. Wang, Manipulation of droplets in microfluidic systems, Trac-trend. Anal. Chem. 29 (2010) 141-157.

  • 加载中
    1. [1]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    2. [2]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    3. [3]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    4. [4]

      Gaowa XingYuting ShangXiaorui WangZengnan WuQiang ZhangJiebing AiQiaosheng PuLing Lin . A microfluidic biosensor for multiplex immunoassay of foodborne pathogens agitated by programmed audio signals. Chinese Chemical Letters, 2024, 35(10): 109491-. doi: 10.1016/j.cclet.2024.109491

    5. [5]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

    6. [6]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    7. [7]

      Feng WuXuemin KongYixuan LiuShuli WangZhong ChenXu Hou . Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chinese Chemical Letters, 2024, 35(8): 109754-. doi: 10.1016/j.cclet.2024.109754

    8. [8]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

Metrics
  • PDF Downloads(0)
  • Abstract views(584)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return