Citation: Xiao-Yan Ren, Le-Hui Lu. Luminescent nanoscale metal-organic frameworks for chemical sensing[J]. Chinese Chemical Letters, ;2015, 26(12): 1439-1445. doi: 10.1016/j.cclet.2015.10.014 shu

Luminescent nanoscale metal-organic frameworks for chemical sensing

  • Corresponding author: Xiao-Yan Ren, 
  • Received Date: 26 August 2015
    Available Online: 19 October 2015

  • Metal-organic frameworks (MOFs) are a fascinating class of crystalline materials constructed from selfassembly of metal cations/clusters and organic ligands. Both metal and organic components can be used to generate luminescence, and can further interact via antenna effect to increase the quantum yield, providing a versatile platform for chemical sensing based on luminescence emission. Moreover, MOFs can be miniaturized to nanometer scale to form nano-MOF (NMOF) materials, which exhibit many advantages over conventional bulk MOFs in terms of the facile tailorability of compositions, sizes and morphologies, the high dispersity in a wide variety of medium, and the intrinsic biocompatibility. This review will detail the development of NMOF materials as chemical sensors, including the synthetic methodologies for designing NMOF sensory materials, their luminescent properties and potential sensing applications.
  • 加载中
    1. [1]

      [1] J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal- organic frameworks, Chem. Soc. Rev. 38 (2009) 1477-1504.

    2. [2]

      [2] J.R. Li, J. Sculley, H.C. Zhou, Metal-organic frameworks for separations, Chem. Rev. 112 (2012) 869-932.

    3. [3]

      [3] D. Liu, J.P. Lang, B.F. Abrahams, Highly efficient separation of a solid mixture of naphthalene and anthracene by a reusable porous metal-organic framework through a single-crystal-to-single-crystal transformation, J. Am. Chem. Soc. 133 (2011) 11042-11045.

    4. [4]

      [4] J.Y. Lee, O.K. Farha, J. Roberts, et al., Metal-organic framework materials as catalysts, Chem. Soc. Rev. 38 (2009) 1450-1459.

    5. [5]

      [5] D. Liu, Z.G. Ren, H.X. Li, et al., Single-crystal-to-single-crystal transformations of two three-dimensional coordination polymers through regioselective [2 + 2] photodimerization reactions, Angew. Chem. Int. Ed. 49 (2010) 4767-4770.

    6. [6]

      [6] B.L. Chen, S.C. Xiang, G.D. Qian, Metal-organic frameworks with functional pores for recognition of small molecules, Acc. Chem. Res. 43 (2010) 1115-1124.

    7. [7]

      [7] L.E. Kreno, K. Leong, O.K. Farha, et al., Metal-organic framework materials as chemical sensors, Chem. Rev. 112 (2012) 1105-1125.

    8. [8]

      [8] M.M. Chen, X. Zhou, H.X. Li, X.X. Yang, J.P. Lang, Luminescent two-dimensional coordination polymer for selective and recyclable sensing of nitroaromatic compounds with high sensitivity in water, Cryst. Growth Des. 15 (2015) 2753-2760.

    9. [9]

      [9] V. Stavila, A.A. Talin, M.D. Allendorf, MOF-based electronic and opto-electronic devices, Chem. Soc. Rev. 43 (2014) 5994-6010.

    10. [10]

      [10] S.L. Li, Q. Xu, Metal-organic frameworks as platforms for clean energy, Energy Environ. Sci. 6 (2013) 1656-1683.

    11. [11]

      [11] J.D. Rocca, D.M. Liu, W.B. Lin, Nanoscale metal-organic frameworks for biomedical imaging and drug delivery, Acc. Chem. Res. 44 (2011) 957-968.

    12. [12]

      [12] Z.C. Hu, B.J. Deibert, J. Li, Luminescent metal-organic frameworks for chemical sensing and explosive detection, Chem. Soc. Rev. 43 (2014) 5815-5840.

    13. [13]

      [13] M.D. Allendorf, C.A. Bauer, R.K. Bhakta, R.J.T. Houk, Luminescent metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1330-1352.

    14. [14]

      [14] Y.J. Cui, Y.F. Yue, G.D. Qian, B.L. Chen, Luminescent functional metal-organic frameworks, Chem. Rev. 112 (2012) 1126-1162.

    15. [15]

      [15] A.M. Spokoyny, D. Kim, A. Sumrein, C.A. Mirkin, Infinite coordination polymer nano- and microparticle structures, Chem. Soc. Rev. 38 (2009) 1218-1227.

    16. [16]

      [16] A. Carné, C. Carbonell, I. Imaz, D. Maspoch, Nanoscale metal-organic materials, Chem. Soc. Rev. 40 (2011) 291-305.

    17. [17]

      [17] M. Sindoro, N. Yanai, A.Y. Jee, S. Granick, Colloidal-sized metal-organic frameworks: synthesis and applications, Acc. Chem. Res. 47 (2014) 459-469.

    18. [18]

      [18] V. Valtchev, L. Tosheva, Porous nanosized particles: preparation, properties, and applications, Chem. Rev. 113 (2013) 6734-6760.

    19. [19]

      [19] M. Oh, C.A. Mirkin, Chemically tailorable colloidal particles from infinite coordination polymers, Nature 438 (2005) 651-654.

    20. [20]

      [20] X.P. Sun, S.J. Dong, E.K. Wang, Coordination-induced formation of submicrometer- scale, monodisperse, spherical colloids of organic-inorganic hybrid materials at room temperature, J. Am. Chem. Soc. 127 (2005) 13102-13103.

    21. [21]

      [21] W.J. Rieter, K.M. Pott, K.M.L. Taylor, W.B. Lin, Nanoscale coordination polymers for platinum-based anticancer drug delivery, J. Am. Chem. Soc. 130 (2008) 11584- 11585.

    22. [22]

      [22] W.J. Rieter, K.M.L. Taylor, H.Y. An, W.L. Lin, W.B. Lin, Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents, J. Am. Chem. Soc. 128 (2006) 9024-9025.

    23. [23]

      [23] K.M.L. Taylor, A. Jin, W.B. Lin, Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging, Angew. Chem. Int. Ed. 47 (2008) 7722-7725.

    24. [24]

      [24] W.T. Yang, J. Feng, S.Y. Song, H.J. Zhang, Microwave-assisted modular fabrication of nanoscale luminescent metal-organic framework for molecular sensing, ChemPhysChem 13 (2012) 2734-2738.

    25. [25]

      [25] T.H. Bae, J.R. Long, CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals, Energy Environ. Sci. 6 (2013) 3565-3569.

    26. [26]

      [26] Y.S. Li, H. Bux, A. Feldhoff, et al., Controllable synthesis of metal-organic frameworks: from MOF nanorods to oriented MOF membranes, Adv. Mater. 22 (2010) 3322-3326.

    27. [27]

      [27] A. Schaate, P. Roy, A. Godt, et al., Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals, Chem. Eur. J. 17 (2011) 6643-6651.

    28. [28]

      [28] T. Tsuruoka, S. Furukawa, Y. Takashima, et al., Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth, Angew. Chem. Int. Ed. 48 (2009) 4739-4743.

    29. [29]

      [29] H.L. Guo, Y.Z. Zhu, S.L. Qiu, J.A. Lercher, H.J. Zhang, Coordination modulation induced synthesis of nanoscale Eu1-xTbx-metal-organic frameworks for luminescent thin films, Adv. Mater. 22 (2010) 4190-4192.

    30. [30]

      [30] J. Cravillon, R. Nayuk, S. Springer, et al., Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by timeresolved in situ static light scattering, Chem. Mater. 23 (2011) 2130-2141.

    31. [31]

      [31] S. Hermes, T. Witte, T. Hikov, et al., Trapping metal-organic framework nanocrystals: an in-situ time-resolved light scattering study on the crystal growth of MOF-5 in solution, J. Am. Chem. Soc. 129 (2007) 5324-5325.

    32. [32]

      [32] S. Diring, S. Furukawa, Y. Takashima, T. Tsuruoka, S. Kitagawa, Controlled multiscale synthesis of porous coordination polymer in nano/micro regimes, Chem. Mater. 22 (2010) 4531-4538.

    33. [33]

      [33] R. Nayuk, D. Zacher, R. Schweins, et al., Modulated formation of MOF-5 nanoparticles- a SANS analysis, J. Phys. Chem. C 116 (2012) 6127-6135.

    34. [34]

      [34] D.M. Jiang, T. Mallat, F. Krumeich, A. Baiker, Polymer-assisted synthesis of nanocrystalline copper-based metal-organic framework for amine oxidation, Catal. Commun. 12 (2011) 602-605.

    35. [35]

      [35] S.K. Nune, P.K. Thallapally, A. Dohnalkova, et al., Synthesis and properties of nano zeolitic imidazolate frameworks, Chem. Commun. 46 (2010) 4878-4880.

    36. [36]

      [36] A. Imaz, J. Hernando, D. Ruiz-Molina, D. Maspoch, Metal-organic spheres as functional systems for guest encapsulation, Angew. Chem. Int. Ed. 48 (2009) 2325-2329.

    37. [37]

      [37] G. Lu, S.Z. Li, Z. Guo, et al., Imparting functionality to ametal-organic framework material by controlled nanoparticle encapsulation, Nat. Chem. 4 (2012) 310- 316.

    38. [38]

      [38] X.M. Lin, G.M. Gao, L.Y. Zheng, Y.W. Chi, G.N. Chen, Encapsulation of strongly fluorescent carbon quantum dots in metal-organic frameworks for enhancing chemical sensing, Anal. Chem. 86 (2014) 1223-1228.

    39. [39]

      [39] J. An, S.J. Geib, N.L. Rosi, Cation-triggered drug release from a porous zincadeninate metal-organic framework, J. Am. Chem. Soc. 131 (2009) 8376-8377.

    40. [40]

      [40] J.C. Yu, Y.J. Cui, H. Xu, et al., Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing, Nat. Commun. 4 (2013) 2719.

    41. [41]

      [41] D. Zacher, O. Shekhah, C. Wö ll, R.A. Fischer, Thin films of metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1418-1429.

    42. [42]

      [42] D. Bradshaw, A. Garai, J. Huo, Metal-organic framework growth at functional interfaces: thin films and composites for diverse applications, Chem. Soc. Rev. 41 (2012) 2344-2381.

    43. [43]

      [43] M. Arnold, P. Kortunov, D.J. Jones, et al., Oriented crystallisation on supports and anisotropic mass transport of the metal-organic framework manganese formate, Eur. J. Inorg. Chem. 2007 (2007) 60-64.

    44. [44]

      [44] H.L. Guo, G.S. Zhu, I.J. Hewitt, S.L. Qiu, “Twin copper source” growth of metal- organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2, J. Am. Chem. Soc. 131 (2009) 1646-1647.

    45. [45]

      [45] R. Ameloot, L. Stappers, J. Fransaer, et al., Patterned growth of metal-organic framework coatings by electrochemical synthesis, Chem. Mater. 21 (2009) 2580- 2582.

    46. [46]

      [46] J. Gascon, S. Aguado, F. Kapteijn, Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on a-alumina, Microporous Mesoporous Mater. 113 (2008) 132-138.

    47. [47]

      [47] D.M. Jiang, A.D. Burrows, R. Jaber, K.J. Edler, Facile synthesis of metal-organic framework films via in situ seeding of nanoparticles, Chem. Commun. 48 (2012) 4965-4967.

    48. [48]

      [48] J.L. Zhuang, D. Ar, X.J. Yu, J.X. Liu, A. Terfort, Patterned deposition of metal-organic frameworks onto plastic, paper, and textile substrates by inkjet printing of a precursor solution, Adv. Mater. 25 (2013) 4631-4635.

    49. [49]

      [49] W. Cho, H.J. Lee, G. Choi, S. Choi, M. Oh, Dual changes in conformation and optical properties of fluorophores within a metal-organic framework during framework construction and associated sensing event, J. Am. Chem. Soc. 136 (2014) 12201- 12204.

    50. [50]

      [50] K.K. Yee, N. Reimer, J. Liu, et al., Effective mercury sorption by thiol-laced metal- organic frameworks: in strong acid and the vapor phase, J. Am. Chem. Soc. 135 (2013) 7795-7798.

    51. [51]

      [51] H.L. Tan, B.X. Liu, Y. Chen, Lanthanide coordination polymer nanoparticles for sensing of mercury(II) by photoinduced electron transfer, ACS Nano 6 (2012) 10505-10511.

    52. [52]

      [52] Y. Lu, B. Yan, J.L. Liu, Nanoscale metal-organic frameworks as highly sensitive luminescent sensors for Fe2+ in aqueous solution and living cells, Chem. Commun. 50 (2014) 9969-9972.

    53. [53]

      [53] Y. Zhou, H.H. Chen, B. Yan, An Eu3+ post-functionalized nanosized metal-organic framework for cation exchange-based Fe3+-sensing in an aqueous environment, J. Mater. Chem. A 2 (2014) 13691-13697.

    54. [54]

      [54] Z.Z. Lu, R. Zhang, Y.Z. Li, Z.J. Guo, H.G. Zheng, Solvatochromic behavior of a nanotubular metal-organic framework for sensing small molecules, J. Am. Chem. Soc. 133 (2011) 4172-4174.

    55. [55]

      [55] Y. Takashima, V.M. Martínez, S. Furukawa, et al., Molecular decoding using luminescence from an entangled porous framework, Nat. Commun. 2 (2011) 168.

    56. [56]

      [56] Y.L. Hou, H. Xu, R.R. Cheng, B. Zhao, Controlled lanthanide-organic framework nanospheres as reversible and sensitive luminescent sensors for practical applications, Chem. Commun. 51 (2015) 6769-6772.

    57. [57]

      [57] W.J. Rieter, K.M.L. Taylor, W.B. Lin, Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing, J. Am. Chem. Soc. 129 (2007) 9852-9853.

    58. [58]

      [58] H. Xu, X.T. Rao, J.K. Gao, et al., A luminescent nanoscale metal-organic framework with controllable morphologies for spore detection, Chem. Commun. 48 (2012) 7377-7379.

    59. [59]

      [59] H. Xu, F. Liu, Y.J. Cui, B.L. Chen, G.D. Qian, A luminescent nanoscale metal-organic framework for sensing of nitroaromatic explosives, Chem. Commun. 47 (2011) 3153-3155.

    60. [60]

      [60] C.Y. Zhang, Y.K. Che, Z.X. Zhang, X.M. Yang, L. Zang, Fluorescent nanoscale zinc(II)- carboxylate coordination polymers for explosive sensing, Chem. Commun. 47 (2011) 2336-2338.

    61. [61]

      [61] R. Li, Y.P. Yuan, L.G. Qiu, W. Zhang, J.F. Zhu, A rational self-sacrificing template route to metal-organic framework nanotubes and reversible vapor-phase detection of nitroaromatic explosives, Small 8 (2012) 225-230.

    62. [62]

      [62] C.H. Zong, X.J. Liu, H.M. Sun, G. Zhang, L.H. Lu, A new type of nanoscale coordination particles: toward modification-free detection of hydrogen sulfide gas, J. Mater. Chem. A 22 (2012) 18418-18425.

    63. [63]

      [63] B.X. Liu, Y. Chen, Responsive lanthanide coordination polymer for hydrogen sulfide, Anal. Chem. 85 (2013) 11020-11025.

    64. [64]

      [64] Z.G. Xie, L.Q. Ma, K.E. deKrafft, A. Jin, W.B. Lin, Porous phosphorescent coordination polymers for oxygen sensing, J. Am. Chem. Soc. 132 (2010) 922-923.

    65. [65]

      [65] X.L. Qi, S.Y. Liu, R.B. Lin, et al., Phosphorescence doping in a flexible ultramicroporous framework for high and tunable oxygen sensing efficiency, Chem. Commun. 49 (2013) 6864-6866.

    66. [66]

      [66] S.Y. Liu, X.L. Qi, R.B. Lin, et al., Porous Cu(I) triazolate framework and derived hybrid membrane with exceptionally high sensing efficiency for gaseous oxygen, Adv. Funct. Mater. 24 (2014) 5866-5872.

    67. [67]

      [67] Y. Lu, B. Yan, A ratiometric fluorescent pH sensor based on nanoscale metal- organic frameworks (MOFs) modified by europium(III) complexes, Chem. Commun. 50 (2014) 13323-13326.

    68. [68]

      [68] C.B. He, K.D. Lu, W.B. Lin, Nanoscale metal-organic frameworks for real-time intracellular pH sensing in live cells, J. Am. Chem. Soc. 136 (2014) 12253-12256.

    69. [69]

      [69] C.D.S. Brites, P.P. Lima, N.J.O. Silva, et al., A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale, Adv. Mater. 22 (2010) 4499-4504.

    70. [70]

      [70] Y.J. Cui, H. Xu, Y.F. Yue, et al., A luminescent mixed-lanthanide metal-organic framework thermometer, J. Am. Chem. Soc. 134 (2012) 3979-3982.

    71. [71]

      [71] A. Cadiau, C.D.S. Brites, P.M.F.J. Costa, et al., Ratiometric nanothermometer based on an emissive Ln3+-organic framework, ACS Nano 7 (2013) 7213-7218.

    72. [72]

      [72] Z.P. Wang, D. Ananias, A. Carné -Sánchez, et al., Lanthanide-organic framework nanothermometers prepared by spray-drying, Adv. Funct. Mater. 25 (2015) 2824-2830.

    73. [73]

      [73] C.M. Doherty, G. Grenci, R. Riccò, et al., Combining UV lithography and an imprinting technique for patterning metal-organic frameworks, Adv. Mater. 25 (2013) 4701-4705.

    74. [74]

      [74] J. Puigmartí-Luis, M. Rubio-Martínez, U. Hartfelder, et al., Coordination polymer nanofibers generated by microfluidic synthesis, J. Am. Chem. Soc. 133 (2011) 4216-4219.

    75. [75]

      [75] E. Bellido, S. Cardona-Serra, E. Coronado, D. Ruiz-Molina, Assisted-assembly of coordination materials into advanced nanoarchitectures by dip pen nanolithography, Chem. Commun. 47 (2011) 5175-5177.

  • 加载中
    1. [1]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    2. [2]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    3. [3]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    4. [4]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    5. [5]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    6. [6]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    7. [7]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    8. [8]

      Wen-Jun XiaYong-Jiang WangYun-Fei CaoCai SunXin-Xiong LiYan-Qiong SunShou-Tian Zheng . A luminescent folded S-shaped high-nuclearity Eu19-oxo-cluster embedded polyoxoniobate for information encryption. Chinese Chemical Letters, 2025, 36(2): 110248-. doi: 10.1016/j.cclet.2024.110248

    9. [9]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    10. [10]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    11. [11]

      Chaohui ZhengJing XiShiyi LongTianpei HeRui ZhaoXinyuan LuoNa ChenQuan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223

    12. [12]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    13. [13]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    14. [14]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    15. [15]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    16. [16]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    17. [17]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    18. [18]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    19. [19]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    20. [20]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

Metrics
  • PDF Downloads(0)
  • Abstract views(618)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return