Citation: Yang Shu, Ying Meng, Ming-Li Chen, Jian-Hua Wang. Isolation of hemoglobin with metal-organic frameworks Y(BTC)(H2O)6[J]. Chinese Chemical Letters, ;2015, 26(12): 1460-1464. doi: 10.1016/j.cclet.2015.10.013 shu

Isolation of hemoglobin with metal-organic frameworks Y(BTC)(H2O)6

  • Corresponding author: Ming-Li Chen,  Jian-Hua Wang, 
  • Received Date: 29 July 2015
    Available Online: 21 October 2015

  • The hierarchical metal-organic frameworks (MOFs), such as Y(BTC)(H2O)6, are prepared with yttrium nitrate and benzene-1,3,5-tricarboxylic acid at room temperature. The product is characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The Y(BTC)(H2O)6 particles are sufficiently rigid for performing solid phase extraction and they exhibit favorable selectivity toward the adsorption of hemoglobin. The adsorption behavior of hemoglobin onto the Y(BTC)(H2O)6 fits the Langmuir adsorption model with a theoretical adsorption capacity of 555.6 mg g-1 . An adsorption efficiency of 87.7% for 100 μgmL-1 hemoglobin in 1 mL sample solution (at pH 6.0) is achieved with 0.40 mg Y(BTC)(H2O)6. 77.3% of the retained hemoglobin is readily recovered using a 0.5% (m/v) SDS solution as the stripping reagent. Circular dichroism spectra indicated that the conformation of hemoglobin is maintained during the adsorption-desorption process. The MOFs material is applied for the isolation of hemoglobin from human blood and the purity of the obtained hemoglobin is further verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).
  • 加载中
    1. [1]

      [1] Q.L. Zhu, Q. Xu, Metal-organic framework composites, Chem. Soc. Rev. 43 (2014) 5468-5512.

    2. [2]

      [2] K. Yusuf, A. Aqel, Z. Alothman, Metal-organic frameworks in chromatography, J. Chromatogr. A 1348 (2014) 1-16.

    3. [3]

      [3] J.P. Lei, R.C. Qian, P.H. Ling, L. Cui, H.X. Ju, Design and sensing applications of metal-organic framework composites, TrAC Trends Anal. Chem. 58 (2014) 71-78.

    4. [4]

      [4] Z.Y. Gu, J. Park, A. Raiff, Z.W. Wei, H.C. Zhou, Metal-organic frameworks as biomimetic catalysts, ChemCatChem 6 (2014) 67-75.

    5. [5]

      [5] N.C. Burtch, H. Jasuja, K.S. Walton, Water stability and adsorption in metal- organic frameworks, Chem. Rev. 114 (2014) 10575-10612.

    6. [6]

      [6] Z.Y. Gu, Y.J. Chen, J.Q. Jiang, X.P. Yan, Metal-organic frameworks for efficient enrichment of peptides with simultaneous exclusion of proteins from complex biological samples, Chem. Commun. 47 (2011) 4787-4789.

    7. [7]

      [7] C.B. Messner, M.R. Mirza, M. Rainer, et al., Selective enrichment of phosphopeptides by a metal-organic framework, Anal. Methods 5 (2013) 2379-2383.

    8. [8]

      [8] Y.W. Zhang, Z. Li, Q. Zhao, et al., A facilely synthesized amino-functionalized metal-organic framework for highly specific and efficient enrichment of glycopeptides, Chem. Commun. 50 (2014) 11504-11506.

    9. [9]

      [9] M. Zhao, C.H. Deng, X.M. Zhang, P.Y. Yang, Facile synthesis of magnetic metal organic frameworks for the enrichment of low-abundance peptides for MALDI- TOF MS analysis, Proteomics 13 (2013) 3387-3392.

    10. [10]

      [10] J.N. Zheng, Z. Lin, G. Lin, H.H. Yang, L. Zhang, Preparation of magnetic metal- organic framework nanocomposites for highly specific separation of histidinerich proteins, J. Mater. Chem. B 3 (2015) 2185-2191.

    11. [11]

      [11] J.W. Liu, Y. Zhang, X.W. Chen, J.H. Wang, Graphene oxide-rare earth metal- organic framework composites for the selective isolation of hemoglobin, ACS Appl. Mater. Interfaces 6 (2014) 10196-10204.

    12. [12]

      [12] S.Z. Li, F.W. Huo, Metal-organic framework composites: from fundamentals to applications, Nanoscale 7 (2015) 7482-7501.

    13. [13]

      [13] T.W. Duan, B. Yan, Hybrids based on lanthanide ions activated yttrium metal- organic frameworks: functional assembly, polymer film preparation and luminescence tuning, J. Mater. Chem. C 2 (2014) 5098-5104.

    14. [14]

      [14] F. Wang, K.J. Deng, G.L. Wu, et al., Facile and large-scale syntheses of nanocrystal rare earth metal-organic frameworks at room temperature and their photoluminescence properties, J. Inorg. Organomet. Polym. 22 (2012) 680-685.

    15. [15]

      [15] Z. Rzaczyń ska, A. Ostasz, S. Pikus, Thermal properties of rare earth elements complexes with 1,3,5-benzenetricarboxylic acid, J. Therm. Anal. Calorim. 82 (2005) 347-351.

    16. [16]

      [16] K. Nakamoto, Infrared and Raman Spectra of Inorganic Coordination Compounds, John Wiley, New York, NY, 2006.

    17. [17]

      [17] Y.H. Wen, J.K. Cheng, Y.L. Feng, et al., Synthesis and crystal structure of [La(BTC)(H2O)6]n, Chin. J. Struct. Chem. 24 (2005) 1440-1444.

    18. [18]

      [18] J.H. Luo, H.W. Xu, Y. Liu, et al., Hydrogen adsorption in a highly stable porous rareearth metal-organic framework: sorption properties and neutron diffraction studies, J. Am. Chem. Soc. 130 (2008) 9626-9627.

    19. [19]

      [19] J. Rouquerol, F. Rouquerol, K.S.W. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, Academic Press, San Diego, CA, 1998.

    20. [20]

      [20] Y. Shu, X.W. Chen, J.H. Wang, Ionic liquid-polyvinyl chloride ionomer for highly selective isolation of basic proteins, Talanta 81 (2010) 637-642.

  • 加载中
    1. [1]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    2. [2]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2024.100210

    3. [3]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    4. [4]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    5. [5]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    6. [6]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    7. [7]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    8. [8]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    9. [9]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    10. [10]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    11. [11]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    12. [12]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    13. [13]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

    14. [14]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    15. [15]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    16. [16]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    17. [17]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    18. [18]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    19. [19]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    20. [20]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

Metrics
  • PDF Downloads(0)
  • Abstract views(730)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return