Citation: Ghasem Rezanejade Bardajee, Marzieh Mohammadi, Hasan Yari, Aseyeh Ghaedi. Simple and efficient protocol for the synthesis of benzoxazole, benzoimidazole and benzothiazole heterocycles using Fe(Ⅲ)-Schiff base/SBA-15 as a nanocatalyst[J]. Chinese Chemical Letters, ;2016, 27(02): 265-270. doi: 10.1016/j.cclet.2015.10.011 shu

Simple and efficient protocol for the synthesis of benzoxazole, benzoimidazole and benzothiazole heterocycles using Fe(Ⅲ)-Schiff base/SBA-15 as a nanocatalyst

  • Corresponding author: Ghasem Rezanejade Bardajee, 
  • Received Date: 30 July 2015
    Available Online: 8 October 2015

    Fund Project:

  • Benzimidazoles, benzoxazoles, and benzothiazoles derivatives were synthesized from condensation of aldehydes and 1,2-phenylenediamine or ortho-aminophenol or ortho-aminothiophenol in the presence of catalytic amount of Fe(Ⅲ)-Schiff base/SBA-15 in water medium. Short reaction times, good to excellent yields, easy availability, reusability, and use of an eco-friendly catalyst are some of the significant attributes of the present method.
  • 加载中
    1. [1]

      [1] D.A. Evans, C.E. Sacks, W.A. Kleschick, T.R. Taber, Polyether antibiotics synthesis. Total synthesis and absolute configuration of the ionophore A-23187, J. Am. Chem. Soc. 101 (1979) 6789-6791.

    2. [2]

      [2] M.J. Yamato, Study on the development of biological-active compounds after the model of natural products, Pharm. Soc. Jpn. 112 (1992) 81-99.

    3. [3]

      [3] X. Song, B.S. Vig, P.L. Lorenzi, et al., Amino acid ester prodrugs of the antiviral agent 2-bromo-5,6-dichloro-1-(β-D-ribofuranosyl) benzimidazole (BDCRB) as potential substrates of hPEPT1 transporter, J. Med. Chem. 48 (2005) 1274-1277.

    4. [4]

      [4] D. Kumar, M.R. Jacob, M.B. Reynolds, S.M. Kerwin, Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1, Bioorg. Med. Chem. 10 (2002) 3997-4004.

    5. [5]

      [5] O.I. Yildiz, I. Yalcin, E. Aki-Sener, N. Ucarturk, Synthesis and structure-activity relationships of new antimicrobial active multisubstituted benzazole derivatives, Eur. J. Med. Chem. 39 (2004) 291-298.

    6. [6]

      [6] A. Benazzou, T. Boraund, P. Dubedat, J.M. Boireau, C. Stutzmann, Riluzole prevents MPTP-induced parkinsonism in the rhesus monkey: a pilot study, Eur. J. Pharmcol. 284 (1995) 299-307.

    7. [7]

      [7] D. Villemin, M. Hammadi, B. Martin, Clay catalysis: condensation of orthoesters with o-substituted aminoaromatics into heterocycles, Synth. Commun. 26 (1996) 2895-2899.

    8. [8]

      [8] M. Doise, F. Dennin, D. Blondeau, H. Sliwa, Synthesis of novel heterocycles: oxazolo[4,5-b] pyridines and oxazolo[4,5-d] pyrimidines, Tetrahedron Lett. 31 (1990) 1155-1156.

    9. [9]

      [9] G.L. Jenkins, A.M. Knevel, C.S. Davis, A new synthesis of the benzothiazole and benzoxazole rings, J. Org. Chem. 26 (1961) 274-276.

    10. [10]

      [10] D.W. Hein, R.J. Alheim, J.J. Leavitt, The use of polyphosphoric acid in the synthesis of 2-aryl-and 2-alkyl-substituted benzimidazoles, benzoxazoles and benzothiazoles, J. Am. Chem. Soc. 79 (1957) 427-429.

    11. [11]

      [11] P. Salehi, M. Dabiri, M.A. Zolfigol, S. Otokesh, M. Baghbanzadeh, Selective synthesis of 2-aryl-1-arylmethyl-1H-1,3-benzimidazoles in water at ambient temperature, Tetrahedron Lett. 47 (2006) 2557-2560.

    12. [12]

      [12] M. Mohammadi, G.R. Bardajee, N.N. Pesyan, A novel method for the synthesis of benzothiazole heterocycles catalyzed by a copper-DiAmSar complex loaded on SBA-15 in aqueous media, RSC Adv. 4 (2014) 62888-62894.

    13. [13]

      [13] Y.H. So, J.P. Heeschen, Mechanism of polyphosphoric acid and phosphorus pentoxide-methanesulfonic acid as synthetic reagents for benzoxazole formation, J. Org. Chem. 62 (1997) 3552-3561.

    14. [14]

      [14] R.N. Nadaf, S.A. Siddiqui, T. Daniel, R.J. Lahoti, K.V. Srinivasan, Room temperature ionic liquid promoted regioselective synthesis of 2-aryl benzimidazoles, benzoxazoles and benzthiazoles under ambient conditions, J. Mol. Catal., A: Chem. 214 (2004) 155-159.

    15. [15]

      [15] M. Terashima, M.A. Ishii, A facile synthesis of 2-substituted benzoxazoles, Synthesis (6) (1982) 484-485.

    16. [16]

      [16] A.K. Chakraborti, S. Rudrawar, G. Kaur, L. Sharma, An efficient conversion of phenolic esters to benzothiazoles under mild and virtually neutral conditions, Synlett 9 (2004) 1533-1536.

    17. [17]

      [17] Y. Pang, W. Hua, Efficient synthesis of 2-(2'-hydroxyphenyl)benzoxazole by palladium(Ⅱ)-catalyzed oxidative cyclization, Tetrahedron Lett. 50 (2009) 6680-6683.

    18. [18]

      [18] W. Shen, T. Kohn, Z. Fu, et al., Synthesis of benzimidazoles from 1,1-dibromoethenes, Tetrahedron Lett. 49 (2008) 7284-7286.

    19. [19]

      [19] M.M. Heravi, S. Sadjadi, H.A. Oskoose, R.H. Shoar, Heteropoly acids as heterogeneous and recyclable catalysts for the synthesis of benzimidazoles, Catal. Commun. 9 (2008) 504-507.

    20. [20]

      [20] R. Trivedi, S.K. De, R.A. Gibbs, A convenient one-pot synthesis of 2-substituted benzimidazoles, J. Mol. Catal., A: Chem. 245 (2006) 8-11.

    21. [21]

      [21] G.R. Bardajee, R. Malakooti, I. Abtin, H. Atashin, Palladium Schiff-base complex loaded SBA-15 as a novel nanocatalyst for the synthesis of 2,3-disubstituted quinoxalines and pyridopyrazine derivatives, Microporous Mesoporous Mater. 169 (2013) 67-74.

    22. [22]

      [22] G.R. Bardajee, R. Malakooti, F. Jami, Z. Parsaei, H. Atashin, Covalent anchoring of copper-Schiff base complex into SBA-15 as a heterogeneous catalyst for the synthesis of pyridopyrazine and quinoxaline derivatives, Catal. Commun. 27 (2012) 49-53.

    23. [23]

      [23] M. Shakeri, R.J.M. Klein Gebbink, P.E. de Jongh, K.P. de Jong, Control and assessment of plugging of mesopores in SBA-15 materials, Microporous Mesoporous Mater. 170 (2013) 340-345.

    24. [24]

      [24] J. Liu, Y. Liu, W. Yang, et al., A novel and simple strategy for the direct synthesis bimetallic mesoporous materials Zr-La-SBA-15, Mater. Lett. 128 (2014) 15-18.

    25. [25]

      [25] K.C. Gupta, A.K. Sutar, Catalytic activities of Schiff base transition metal complexes, Coord. Chem. Rev. 252 (2008) 1420-1450.

    26. [26]

      [26] P.G. Cozzi, Metal-Salen Schiff base complexes in catalysis: practical aspects, Chem. Soc. Rev. 33 (2004) 410-421.

    27. [27]

      [27] D. Zhao, J. Feng, Q. Huo, et al., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 279 (1998) 548-552.

    28. [28]

      [28] I.C. Chisem, J. Rafelt, M.T. Shieh, et al., Catalytic oxidation of alkyl aromatics using a novel silica supported Schiff base complex, Chem. Commun. 18 (1998) 1949-1950.

    29. [29]

      [29] B.A. Abdelkrim, B. Khalid, S. Mohamed, Synthèse chimiosélective des benzimidazoles sur silice traitée par le chlorure du thionyle, Tetrahedron Lett. 44 (2003) 5935-5937.

    30. [30]

      [30] H. Goker, C. Ku, D.W. Boykin, S. Yildiz, N. Altanar, Synthesis of some new 2-substituted-phenyl-1H-benzimidazole-5-carbonitriles and their potent activity against Candida species, Bioorg. Med. Chem. 10 (2002) 2589-2596.

    31. [31]

      [31] K. Khosravi, S. Kazemi, Synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles in both room temperature and microwave condition catalyzed by hexamethylenetetramine-bromine complex, Chin. Chem. Lett. 23 (2012) 61-64.

    32. [32]

      [32] S.B. Sapkal, K.F. Shelke, S.S. Sonar, B.B. Shingate, M.S. Shingare, Acidic ionic liquid catalyzed environmentally friendly synthesis of benzimidazole derivatives, Bull. Catal. Soc. India 2 (2009) 78-83.

    33. [33]

      [33] D.V. Ramana, E. Kantharaj, Synthesis of 2-substituted benzoxazoles and benzimidazoles based on mass spectral ortho interactions, J. Chem. Soc., Perkin Trans. 2 (1995) 1497-1501.

    34. [34]

      [34] R.S. Pottorf, N.K. Chadha, M. Katkevics, et al., Parallel synthesis of benzoxazoles via microwave-assisted dielectric heating, Tetrahedron Lett. 44 (2003) 175-178.

    35. [35]

      [35] R.S. Varma, R.K. Saini, O. Prakash, Hypervalent iodine oxidation of phenolic Schiff's bases: synthesis of 2-arylbenzoxazoles, Tetrahedron Lett. 38 (1997) 2621-2622.

    36. [36]

      [36] M.M. Heravi, N. Abdolhosseini, H.A. Oskooie, Re-gioselective and high-yielding bromination of aromatic compounds using hexamethylenetetramine-bromine, Tetrahedron Lett. 46 (2005) 8959-8963.

    37. [37]

      [37] S.V. Nalage, S.V. Bhosale, D.S. Bhosale, W.N. Jadhav, P2O5 mediated rapid condensation of 2-aminothiophenol with aromatic aldehydes at ambient temperature, Chin. Chem. Lett. 21 (2010) 790-793.

    38. [38]

      [38] Y. Li, Y.L. Wang, J.Y. Wang, A simple iodine-promoted synthesis of 2-substituted benzothiazoles by condensation of aldehydes with 2-aminothiophenol, Chem. Lett. 35 (2006) 460-461.

    39. [39]

      [39] M. Okimoto, T. Yoshida, M. Hoshi, et al., Electrooxidative cyclization of benzylideneaminothiophenols to the corresponding 2-arylbenzothiazoles, Heterocycles 75 (2008) 35-42.

    40. [40]

      [40] F.M. Masteri, F. Farzaneh, M. Ghandi, Synthesis and characterization of molybdenum complexes with bidentate Schiff base ligands within nanoreactors of MCM-41 as epoxidation catalysts, J. Mol. Catal., A: Chem. 248 (2006) 53-60.

    41. [41]

      [41] W.H. Zhang, X.B. Lu, J.H. Xiu, et al., Synthesis and characterization of bifunctionalized ordered mesoporous materials, Adv. Funct. Mater. 14 (2004) 544-552.

    42. [42]

      [42] S. Jana, B. Dutta, R. Bera, S. Koner, Anchoring of copper complex in MCM-41 matrix: a highly efficient catalyst for epoxidation of olefins by tert-BuOOH, Langmuir 23 (2007) 2492-2496.

    43. [43]

      [43] U.G. Singh, R.T. Williams, K.R. Hallam, G.C. Allen, Exploring the distribution of copper-Schiff base complex covalently anchored onto the surface of mesoporous MCM 41 silica, J. Solid State Chem. 178 (2005) 3405-3413.

    44. [44]

      [44] S. Singha, K.M. Parida, A.C. Dash, Fe(Ⅲ)-salim anchored MCM-41: synthesis, characterization and catalytic activity towards liquid phase cyclohexane oxidation, J. Porous Mater. 18 (2011) 707-714.

  • 加载中
    1. [1]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    2. [2]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    3. [3]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    4. [4]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    5. [5]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    6. [6]

      Yun-Fei ZhangChun-Hui ZhangJian-Hui XuLei LiDan LiJin-Hong FanJiale GaoXin QuanQi WuYue ZouYan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385

    7. [7]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    8. [8]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    9. [9]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    10. [10]

      Linjing LiWenlai XuJianyong NingYaping ZhongChuyue ZhangJiane ZuoZhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243

    11. [11]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    12. [12]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    13. [13]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    14. [14]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    15. [15]

      Zhendong LiuSainan LiuBin LiuQi MengMeng YuanChunzheng YangYulong BianPing'an MaJun Lin . Fe(Ⅲ)-juglone nanoscale coordination polymers for cascade chemodynamic therapy through synergistic ferroptosis and apoptosis strategy. Chinese Chemical Letters, 2024, 35(11): 109626-. doi: 10.1016/j.cclet.2024.109626

    16. [16]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    17. [17]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    18. [18]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    19. [19]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    20. [20]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

Metrics
  • PDF Downloads(0)
  • Abstract views(622)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return