Citation: Ghasem Rezanejade Bardajee, Marzieh Mohammadi, Hasan Yari, Aseyeh Ghaedi. Simple and efficient protocol for the synthesis of benzoxazole, benzoimidazole and benzothiazole heterocycles using Fe(Ⅲ)-Schiff base/SBA-15 as a nanocatalyst[J]. Chinese Chemical Letters, ;2016, 27(02): 265-270. doi: 10.1016/j.cclet.2015.10.011
-
Benzimidazoles, benzoxazoles, and benzothiazoles derivatives were synthesized from condensation of aldehydes and 1,2-phenylenediamine or ortho-aminophenol or ortho-aminothiophenol in the presence of catalytic amount of Fe(Ⅲ)-Schiff base/SBA-15 in water medium. Short reaction times, good to excellent yields, easy availability, reusability, and use of an eco-friendly catalyst are some of the significant attributes of the present method.
-
Keywords:
- Fe(Ⅲ)-SBA-15,
- Heterocycles,
- Nanocatalyst,
- Benzoxazoles,
- Benzoimidazoles,
- Benzothiazoles
-
-
[1]
[1] D.A. Evans, C.E. Sacks, W.A. Kleschick, T.R. Taber, Polyether antibiotics synthesis. Total synthesis and absolute configuration of the ionophore A-23187, J. Am. Chem. Soc. 101 (1979) 6789-6791.
-
[2]
[2] M.J. Yamato, Study on the development of biological-active compounds after the model of natural products, Pharm. Soc. Jpn. 112 (1992) 81-99.
-
[3]
[3] X. Song, B.S. Vig, P.L. Lorenzi, et al., Amino acid ester prodrugs of the antiviral agent 2-bromo-5,6-dichloro-1-(β-D-ribofuranosyl) benzimidazole (BDCRB) as potential substrates of hPEPT1 transporter, J. Med. Chem. 48 (2005) 1274-1277.
-
[4]
[4] D. Kumar, M.R. Jacob, M.B. Reynolds, S.M. Kerwin, Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1, Bioorg. Med. Chem. 10 (2002) 3997-4004.
-
[5]
[5] O.I. Yildiz, I. Yalcin, E. Aki-Sener, N. Ucarturk, Synthesis and structure-activity relationships of new antimicrobial active multisubstituted benzazole derivatives, Eur. J. Med. Chem. 39 (2004) 291-298.
-
[6]
[6] A. Benazzou, T. Boraund, P. Dubedat, J.M. Boireau, C. Stutzmann, Riluzole prevents MPTP-induced parkinsonism in the rhesus monkey: a pilot study, Eur. J. Pharmcol. 284 (1995) 299-307.
-
[7]
[7] D. Villemin, M. Hammadi, B. Martin, Clay catalysis: condensation of orthoesters with o-substituted aminoaromatics into heterocycles, Synth. Commun. 26 (1996) 2895-2899.
-
[8]
[8] M. Doise, F. Dennin, D. Blondeau, H. Sliwa, Synthesis of novel heterocycles: oxazolo[4,5-b] pyridines and oxazolo[4,5-d] pyrimidines, Tetrahedron Lett. 31 (1990) 1155-1156.
-
[9]
[9] G.L. Jenkins, A.M. Knevel, C.S. Davis, A new synthesis of the benzothiazole and benzoxazole rings, J. Org. Chem. 26 (1961) 274-276.
-
[10]
[10] D.W. Hein, R.J. Alheim, J.J. Leavitt, The use of polyphosphoric acid in the synthesis of 2-aryl-and 2-alkyl-substituted benzimidazoles, benzoxazoles and benzothiazoles, J. Am. Chem. Soc. 79 (1957) 427-429.
-
[11]
[11] P. Salehi, M. Dabiri, M.A. Zolfigol, S. Otokesh, M. Baghbanzadeh, Selective synthesis of 2-aryl-1-arylmethyl-1H-1,3-benzimidazoles in water at ambient temperature, Tetrahedron Lett. 47 (2006) 2557-2560.
-
[12]
[12] M. Mohammadi, G.R. Bardajee, N.N. Pesyan, A novel method for the synthesis of benzothiazole heterocycles catalyzed by a copper-DiAmSar complex loaded on SBA-15 in aqueous media, RSC Adv. 4 (2014) 62888-62894.
-
[13]
[13] Y.H. So, J.P. Heeschen, Mechanism of polyphosphoric acid and phosphorus pentoxide-methanesulfonic acid as synthetic reagents for benzoxazole formation, J. Org. Chem. 62 (1997) 3552-3561.
-
[14]
[14] R.N. Nadaf, S.A. Siddiqui, T. Daniel, R.J. Lahoti, K.V. Srinivasan, Room temperature ionic liquid promoted regioselective synthesis of 2-aryl benzimidazoles, benzoxazoles and benzthiazoles under ambient conditions, J. Mol. Catal., A: Chem. 214 (2004) 155-159.
-
[15]
[15] M. Terashima, M.A. Ishii, A facile synthesis of 2-substituted benzoxazoles, Synthesis (6) (1982) 484-485.
-
[16]
[16] A.K. Chakraborti, S. Rudrawar, G. Kaur, L. Sharma, An efficient conversion of phenolic esters to benzothiazoles under mild and virtually neutral conditions, Synlett 9 (2004) 1533-1536.
-
[17]
[17] Y. Pang, W. Hua, Efficient synthesis of 2-(2'-hydroxyphenyl)benzoxazole by palladium(Ⅱ)-catalyzed oxidative cyclization, Tetrahedron Lett. 50 (2009) 6680-6683.
-
[18]
[18] W. Shen, T. Kohn, Z. Fu, et al., Synthesis of benzimidazoles from 1,1-dibromoethenes, Tetrahedron Lett. 49 (2008) 7284-7286.
-
[19]
[19] M.M. Heravi, S. Sadjadi, H.A. Oskoose, R.H. Shoar, Heteropoly acids as heterogeneous and recyclable catalysts for the synthesis of benzimidazoles, Catal. Commun. 9 (2008) 504-507.
-
[20]
[20] R. Trivedi, S.K. De, R.A. Gibbs, A convenient one-pot synthesis of 2-substituted benzimidazoles, J. Mol. Catal., A: Chem. 245 (2006) 8-11.
-
[21]
[21] G.R. Bardajee, R. Malakooti, I. Abtin, H. Atashin, Palladium Schiff-base complex loaded SBA-15 as a novel nanocatalyst for the synthesis of 2,3-disubstituted quinoxalines and pyridopyrazine derivatives, Microporous Mesoporous Mater. 169 (2013) 67-74.
-
[22]
[22] G.R. Bardajee, R. Malakooti, F. Jami, Z. Parsaei, H. Atashin, Covalent anchoring of copper-Schiff base complex into SBA-15 as a heterogeneous catalyst for the synthesis of pyridopyrazine and quinoxaline derivatives, Catal. Commun. 27 (2012) 49-53.
-
[23]
[23] M. Shakeri, R.J.M. Klein Gebbink, P.E. de Jongh, K.P. de Jong, Control and assessment of plugging of mesopores in SBA-15 materials, Microporous Mesoporous Mater. 170 (2013) 340-345.
-
[24]
[24] J. Liu, Y. Liu, W. Yang, et al., A novel and simple strategy for the direct synthesis bimetallic mesoporous materials Zr-La-SBA-15, Mater. Lett. 128 (2014) 15-18.
-
[25]
[25] K.C. Gupta, A.K. Sutar, Catalytic activities of Schiff base transition metal complexes, Coord. Chem. Rev. 252 (2008) 1420-1450.
-
[26]
[26] P.G. Cozzi, Metal-Salen Schiff base complexes in catalysis: practical aspects, Chem. Soc. Rev. 33 (2004) 410-421.
-
[27]
[27] D. Zhao, J. Feng, Q. Huo, et al., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 279 (1998) 548-552.
-
[28]
[28] I.C. Chisem, J. Rafelt, M.T. Shieh, et al., Catalytic oxidation of alkyl aromatics using a novel silica supported Schiff base complex, Chem. Commun. 18 (1998) 1949-1950.
-
[29]
[29] B.A. Abdelkrim, B. Khalid, S. Mohamed, Synthèse chimiosélective des benzimidazoles sur silice traitée par le chlorure du thionyle, Tetrahedron Lett. 44 (2003) 5935-5937.
-
[30]
[30] H. Goker, C. Ku, D.W. Boykin, S. Yildiz, N. Altanar, Synthesis of some new 2-substituted-phenyl-1H-benzimidazole-5-carbonitriles and their potent activity against Candida species, Bioorg. Med. Chem. 10 (2002) 2589-2596.
-
[31]
[31] K. Khosravi, S. Kazemi, Synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles in both room temperature and microwave condition catalyzed by hexamethylenetetramine-bromine complex, Chin. Chem. Lett. 23 (2012) 61-64.
-
[32]
[32] S.B. Sapkal, K.F. Shelke, S.S. Sonar, B.B. Shingate, M.S. Shingare, Acidic ionic liquid catalyzed environmentally friendly synthesis of benzimidazole derivatives, Bull. Catal. Soc. India 2 (2009) 78-83.
-
[33]
[33] D.V. Ramana, E. Kantharaj, Synthesis of 2-substituted benzoxazoles and benzimidazoles based on mass spectral ortho interactions, J. Chem. Soc., Perkin Trans. 2 (1995) 1497-1501.
-
[34]
[34] R.S. Pottorf, N.K. Chadha, M. Katkevics, et al., Parallel synthesis of benzoxazoles via microwave-assisted dielectric heating, Tetrahedron Lett. 44 (2003) 175-178.
-
[35]
[35] R.S. Varma, R.K. Saini, O. Prakash, Hypervalent iodine oxidation of phenolic Schiff's bases: synthesis of 2-arylbenzoxazoles, Tetrahedron Lett. 38 (1997) 2621-2622.
-
[36]
[36] M.M. Heravi, N. Abdolhosseini, H.A. Oskooie, Re-gioselective and high-yielding bromination of aromatic compounds using hexamethylenetetramine-bromine, Tetrahedron Lett. 46 (2005) 8959-8963.
-
[37]
[37] S.V. Nalage, S.V. Bhosale, D.S. Bhosale, W.N. Jadhav, P2O5 mediated rapid condensation of 2-aminothiophenol with aromatic aldehydes at ambient temperature, Chin. Chem. Lett. 21 (2010) 790-793.
-
[38]
[38] Y. Li, Y.L. Wang, J.Y. Wang, A simple iodine-promoted synthesis of 2-substituted benzothiazoles by condensation of aldehydes with 2-aminothiophenol, Chem. Lett. 35 (2006) 460-461.
-
[39]
[39] M. Okimoto, T. Yoshida, M. Hoshi, et al., Electrooxidative cyclization of benzylideneaminothiophenols to the corresponding 2-arylbenzothiazoles, Heterocycles 75 (2008) 35-42.
-
[40]
[40] F.M. Masteri, F. Farzaneh, M. Ghandi, Synthesis and characterization of molybdenum complexes with bidentate Schiff base ligands within nanoreactors of MCM-41 as epoxidation catalysts, J. Mol. Catal., A: Chem. 248 (2006) 53-60.
-
[41]
[41] W.H. Zhang, X.B. Lu, J.H. Xiu, et al., Synthesis and characterization of bifunctionalized ordered mesoporous materials, Adv. Funct. Mater. 14 (2004) 544-552.
-
[42]
[42] S. Jana, B. Dutta, R. Bera, S. Koner, Anchoring of copper complex in MCM-41 matrix: a highly efficient catalyst for epoxidation of olefins by tert-BuOOH, Langmuir 23 (2007) 2492-2496.
-
[43]
[43] U.G. Singh, R.T. Williams, K.R. Hallam, G.C. Allen, Exploring the distribution of copper-Schiff base complex covalently anchored onto the surface of mesoporous MCM 41 silica, J. Solid State Chem. 178 (2005) 3405-3413.
-
[44]
[44] S. Singha, K.M. Parida, A.C. Dash, Fe(Ⅲ)-salim anchored MCM-41: synthesis, characterization and catalytic activity towards liquid phase cyclohexane oxidation, J. Porous Mater. 18 (2011) 707-714.
-
[1]
-
-
[1]
Chong-Yang Shi , Jian-Xing Gong , Zhen Li , Chao Shu , Long-Wu Ye , Qing Sun , Bo Zhou , Xin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895
-
[2]
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
-
[3]
Kangmin Wang , Liqiu Wan , Jingyu Wang , Chunlin Zhou , Ke Yang , Liang Zhou , Bijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554
-
[4]
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
-
[5]
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
-
[6]
Yun-Fei Zhang , Chun-Hui Zhang , Jian-Hui Xu , Lei Li , Dan Li , Jin-Hong Fan , Jiale Gao , Xin Quan , Qi Wu , Yue Zou , Yan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385
-
[7]
Yanqiong Wang , Yaqi Hou , Fengwei Huo , Xu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428
-
[8]
Weichen Zhu , Wei Zuo , Pu Wang , Wei Zhan , Jun Zhang , Lipin Li , Yu Tian , Hong Qi , Rui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341
-
[9]
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
-
[10]
Linjing Li , Wenlai Xu , Jianyong Ning , Yaping Zhong , Chuyue Zhang , Jiane Zuo , Zhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243
-
[11]
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
-
[12]
Guihuang Fang , Wei Chen , Hongwei Yang , Haisheng Fang , Chuang Yu , Maoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799
-
[13]
Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391
-
[14]
Bing Shen , Tongwei Yuan , Wenshuang Zhang , Yang Chen , Jiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490
-
[15]
Zhendong Liu , Sainan Liu , Bin Liu , Qi Meng , Meng Yuan , Chunzheng Yang , Yulong Bian , Ping'an Ma , Jun Lin . Fe(Ⅲ)-juglone nanoscale coordination polymers for cascade chemodynamic therapy through synergistic ferroptosis and apoptosis strategy. Chinese Chemical Letters, 2024, 35(11): 109626-. doi: 10.1016/j.cclet.2024.109626
-
[16]
Yuan CONG , Yunhao WANG , Wanping LI , Zhicheng ZHANG , Shuo LIU , Huiyuan GUO , Hongyu YUAN , Zhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219
-
[17]
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
-
[18]
Yuan ZHU , Xiaoda ZHANG , Shasha WANG , Peng WEI , Tao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232
-
[19]
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
-
[20]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(622)
- HTML views(23)