Citation: Zhi-Lei Zhou, Peng-Cheng Wang, Ming Lu. Bronsted acidic ionic liquid [C3SO3HDoim]HSO4 catalyzed one-pot three-component Biginelli-type reaction: An efficient and solvent-free synthesis of pyrimidinone derivatives and its mechanistic study[J]. Chinese Chemical Letters, ;2016, 27(02): 226-230. doi: 10.1016/j.cclet.2015.10.010 shu

Bronsted acidic ionic liquid [C3SO3HDoim]HSO4 catalyzed one-pot three-component Biginelli-type reaction: An efficient and solvent-free synthesis of pyrimidinone derivatives and its mechanistic study

  • Corresponding author: Ming Lu, 
  • Received Date: 6 September 2015
    Available Online: 26 September 2015

  • A series of Bronsted acidic ionic liquids (ILs) were prepared and used for Biginelli-type condensation reaction among aromatic aldehydes, urea or thiourea and cyclopentanone. Through this reaction, the synthesis of various pyrimidinones could be achieved. Of interest, it was found that the reaction was efficiently catalyzed by a novel, eco-friendly functionalized IL [C3SO3HDoim]HSO4, which could be reused for at least 7 times without significantly loss of catalytic activity. The reaction proceeded efficiently at 80℃ to afford the desired products in good yield (up to 96%). In addition, a possible mechanism that accounted for the IL [C3SO3HDoim]HSO4-catalyzed reaction was proposed.
  • 加载中
    1. [1]

      [1] K.S. Atwal, G.C. Rovnyak, B.C. O'Reilly, J. Schwartz, Substituted 1,4-dihydropyrimidines. 3. Synthesis of selectively functionalized 2-hetero-1,4-dihydropyrimidines, J. Org. Chem. 54 (1989) 5898-5907.

    2. [2]

      [2] C.O. Kappe, W.M.F. Fabian, M.A. Semones, Conformational analysis of 4-aryldihydropyrimidine calcium channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies, Tetrahedron 53 (1997) 2803-2816.

    3. [3]

      [3] A.D. Patil, N.V. Kumar, W.C. Kokke, et al., Novel alkaloids from the sponge Batzella sp.: inhibitors of HIV gp120-human CD4 binding, J. Org. Chem. 60 (1995) 1182-1188.

    4. [4]

      [4] H.I. EI-Subbagh, S.M. Abu-Zaid, M.A. Mahran, et al., Synthesis and biological evaluation of certain α,β-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents, J. Med. Chem. 43 (2000) 2915-2921.

    5. [5]

      [5] P. Biginelli, Aldureides of ethylic acetoacetate and ethylic oxalacetate, Gazz. Chim. Ital. 23 (1893) 360-416.

    6. [6]

      [6] Y.L. Zhu, S.L. Huang, Y.J. Pan, Highly chemoselective multicomponent Biginellitype condensations of cycloalkanones, urea or thiourea and aldehydes, Eur. J. Org. Chem. 11 (2005) 2354-2367.

    7. [7]

      [7] (a) E.H. Hu, D.R. Sidler, U.H. Dolling, Unprecedented catalytic three component one-pot condensation reaction: an efficient synthesis of 5-alkoxycarbonyl-4-aryl-3,4-dihydropyrimidin-2(1H)-ones, J. Org. Chem. 63 (1998) 3454-3457;

    8. [8]

      (b) P.P. Warekar, G.B. Kolekar, M.B. Deshmukh, P.V. Anbhule, An efficient and modified Biginelli-type synthesis of 3,4-dihydro-1H-indeno[1,2-d] pyrimidine-2,5-dione using phosphorous pentoxide, Synth. Commun. 44 (2014) 3594-3601.

    9. [9]

      [8] (a) J. Lu, H. Ma, Iron(Ⅲ)-catalyzed synthesis of dihydropyrimidinones. Improved conditions for the Biginelli reaction, Synlett 207 (2000) 63-64;

    10. [10]

      (b) J. Lu, Y. Bai, Z. Wang, B. Yang, H. Ma, One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using lanthanum chloride as a catalyst, Tetrahedron Lett. 41 (2000) 9075-9078;

    11. [11]

      (c) E. Pair, V. Levacher, J.F. Briere, Organocatalyzed multicomponent synthesis of pyrazolidinones: meldrum's acid approach, RSC Adv. 46 (2015) 46267-46271.

    12. [12]

      [9] Y. Ma, C. Qian, L. Wang, M. Yang, Lanthanide triflate catalyzed Biginelli reaction. One-pot synthesis of dihydropyrimidinones under solvent-free conditions, J. Org. Chem. 65 (2000) 3864-3868.

    13. [13]

      [10] B.C. Ranu, A. Hajra, U. Jana, Indium(Ⅲ) chloride-catalyzed one-pot synthesis of dihydropyrimidinones by a three-component coupling of 1,3-dicarbonyl compounds, aldehydes, and urea: an improved procedure for the Biginelli reaction, J. Org. Chem. 65 (2000) 6270-6272.

    14. [14]

      [11] (a) P. Wipf, CunninghamF A., A solid phase protocol of the Biginelli dihydropyrimidine synthesis suitable for combinatorial chemistry, Tetrahedron Lett. 36 (1995) 7819-7822;

    15. [15]

      (b) A. Studer, P. Jeger, P. Wipf, P. Curran, Fluorous synthesis: fluorous protocols for the Ugi and Biginelli multicomponent condensations, J. Org. Chem. 62 (1997) 2917-2924.

    16. [16]

      [12] (a) H.A. Stefani, P.M. Gatti, 3,4-Dihydropyrimidin-2(1H)-ones: fast synthesis under microwave irradiation in solvent free conditions, Synth. Commun. 30 (2000) 2165-2173;

    17. [17]

      (b) C.O. Kappe, D. Kumar, R.S. Varma, Microwave-assited high-speed parallel synthesis of 4-aryl-3,4-dihydropyrimidin-2(1H)-ones using a solventless Biginelli condensation protocol, Synthesis 10 (1999) 1799-1803.

    18. [18]

      [13] (a) B.B. Snider, J. Chen, A.D. Patil, A. Freyer, Synthesis of the tricyclic portions of batzelladines A, B and D. Revision of the stereochemistry of batzelladines A and D, Tetrahedron Lett. 37 (1996) 6977-6980;

    19. [19]

      (b) A.V. RamaRao, M.K. Gujar, J. Vasudevan, An enantiospecific synthesis of the tricyclic guanidine segment of the anti-HIV marine alkaloid batzelladine A, J. Chem. Soc., Chem. Commun. 26 (1995) 1369-1370;

    20. [20]

      (c) Z. Wang, L. Xu, C. Xia, H. Wang, Novel Biginelli-like three-component cyclocondensation reaction: efficient synthesis of 5-unsubstituted 3,4-dihydropyrimidin-2(1H)-ones, Tetrahedron Lett. 45 (2004) 7951-7953;

    21. [21]

      (d) B. Liang, X. Wang, J.X. Wang, Z. Du, New three-component cyclocondensation reaction: microwave-assisted one-pot synthesis of 5-unsubstituted-3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions, Tetrahedron 63 (2007) 1981-1986.

    22. [22]

      [14] D.M. D'Souza, T.J.J. Muller, Multicomponent syntheses of heterocycles by transition-metal catalysis, Chem. Soc. Rev. 36 (2007) 1095-1108.

    23. [23]

      [15] (a) S. Kobayashi, M. Sugiura, H. Kitagawa, W.W.L. Lam, Chem inform abstract: rare-earth metal triflates in organic synthesis, Chem. Rev. 102 (2002) 2227-2302;

    24. [24]

      (b) M. Shibasaki, S. Matsunaga, Design and application of linked-BINOL chiral ligands in bifunctional asymmetric catalysis, Chem. Soc. Rev. 35 (2006) 269-279.

    25. [25]

      [16] H. Zhang, Z. Zhou, Z. Yao, F. Xu, Q. Shen, Efficient synthesis of pyrimidinone derivatives by ytterbium chloride catalyzed Biginelli-type reaction under solventfree conditions, Tetrahedron Lett. 50 (2009) 1622-1624.

    26. [26]

      [17] K.R. Seddon, Ionic liquids for clean technology, J. Chem. Technol. Biotechnol. 68 (1997) 351-356.

    27. [27]

      [18] (a) T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev. 99 (1999) 2071-2084;

    28. [28]

      (b) P. Wasserscheid, W. Keim, Ionic liquids-new "solutions" for transition metal catalysis, Angew. Chem. Int. Ed. 39 (2000) 3772-3789;

    29. [29]

      (c) J.S. Wilkes, A short history of ionic liquids-from molten salts to neoteric solvents, Green Chem. 4 (2002) 73-80;

    30. [30]

      (d) V.I. Parvulescu, C. Hardacre, Catalysis in ionic liquids, Chem. Rev. 107 (2007) 2615-2665.

    31. [31]

      [19] C. Chiappe, E. Leandri, M. Tebano, [Hmim] [NO3] —an efficient solvent and promoter in the oxidative aromatic chlorination, Green Chem. 8 (2006) 742-745.

    32. [32]

      [20] D. Fang, J. Luo, X.L. Zhou, Z.L. Liu, One-pot green procedure for Biginelli reaction catalyzed by novel task-specific room-temperature ionic liquids, J. Mol. Catal., A: Chem. 274 (2007) 208-211.

    33. [33]

      [21] S.F. Chai, L.S. Wang, G.Q. Yan, Y. Li, Solubilities of 1-methyl-3-(3-sulfopropyl)-imidazolium hydrogen sulfate in selected solvents, J. Chem. Eng. Chin. 18 (2010) 1008-1012.

    34. [34]

      [22] H.Z. Zhi, C.X. Lv, Q. Zhang, et al., A new PEG-1000-based dicationic ionic liquid exhibiting temperature-dependent phase behavior with toluene and its application in one-pot synthesis of benzopyrans, Chem. Commun. 20 (2009) 2878-2880.

    35. [35]

      [23] A.C. Cole, J.L. Jensen, I. Ntai, et al., Novel bronsted acidic ionic liquids and their use as dual solvent-catalysts, J. Am. Chem. Soe. 124 (2002) 5962-5963.

    36. [36]

      [24] A. Yoshimura, A. Nomoto, A. Ogawa, Rhodium-catalyzed hydrothiolation of alkynes with thiols for construction of sulfur-containing π-conjugated systems, Res. Chem. Intermediat. 40 (2014) 2381-2389.

    37. [37]

      [25] (a) C.O. Kappe, A reexamination of the mechanism of the Biginelli dihydropyrimidine synthesis. Support for an N-acyliminium ion intermediate, J. Org. Chem. 62 (1997) 7201-7204;

    38. [38]

      (b) C.O. Kappe, Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog, Acc. Chem. Res. 33 (2000) 879-888.

    39. [39]

      [26] D. Saha, A. Saha, B.C. Ranu, Remarkable influence of substituent in ionic liquid in control of reaction: simple, efficient and hazardous organic solvent free procedure for the synthesis of 2-aryl benzimidazoles promoted by ionic liquid, [pmim] BF4, Green Chem. 11 (2009) 733-737.

    40. [40]

      [27] (a) M.J. Earle, S.P. Katdare, K.R. Seddon, Paradigm confirmed: the first use of ionic liquids to dramatically influence the outcome of chemical reactions, Org. Lett. 6 (2004) 707-710;

    41. [41]

      (b) B.C. Ranu, S. Banerjee, The dramatic influence of a task-specific ionic liquid, [bmIm] OH, in michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles, Org. Lett. 7 (2005) 3049-3052.

    42. [42]

      [28] L. Wang, J. Sheng, H. Tian, et al., A convenient synthesis of α,α'-bis(substituted benzylidene)cycloalkanones catalyzed by Yb(OTf)3 under solvent-free conditions, Synthesis 18 (2004) 3060-3064.

  • 加载中
    1. [1]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    2. [2]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

    3. [3]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    4. [4]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    5. [5]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    6. [6]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    7. [7]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    8. [8]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    9. [9]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    10. [10]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    11. [11]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    12. [12]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    13. [13]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    14. [14]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    15. [15]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    16. [16]

      Xiang Wu Chengfeng Zhu Fang Li Bing Li Yanming Fu Lanjun Cheng Yougui Li . Cultivating the Innovative Practical Abilities of College Students Based on the OBE Concept: Taking the Applied Chemistry Major of Hefei University of Technology as an Example. University Chemistry, 2024, 39(2): 280-285. doi: 10.3866/PKU.DXHX202308040

    17. [17]

      Haiyuan Wang Shanshan Cheng Hui Yang . Development and Exploration of the Ideological and Political Education Framework in Applied Chemistry Postgraduate Curriculum. University Chemistry, 2024, 39(6): 72-82. doi: 10.3866/PKU.DXHX202311020

    18. [18]

      Peiqi Gao Jiao Zheng LiMiao Chen Yi Zhang . Exploration of the Deep Integration Strategy between Innovation and Entrepreneurship Education and Applied Chemistry Major Courses. University Chemistry, 2024, 39(6): 214-219. doi: 10.3866/PKU.DXHX202310086

    19. [19]

      Nuo Zhang Xiaojun Sun Hongmin Ma Yan Li Xiang Ren Dan Wu Chuannan Luo Qin Wei . Construction and Practice of National Experimental Teaching Demonstration Center of Applied Chemistry. University Chemistry, 2024, 39(7): 116-120. doi: 10.12461/PKU.DXHX202405031

    20. [20]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

Metrics
  • PDF Downloads(0)
  • Abstract views(641)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return