Citation: Xi-Le Deng, Li Zhang, Xue-Ping Hu, Bin Yin, Pei Liang, Xin-Ling Yang. Target-based design, synthesis and biological activity of new pyrazole amide derivatives[J]. Chinese Chemical Letters, ;2016, 27(02): 251-255. doi: 10.1016/j.cclet.2015.10.006 shu

Target-based design, synthesis and biological activity of new pyrazole amide derivatives

  • Corresponding author: Li Zhang,  Xin-Ling Yang, 
  • Received Date: 23 June 2015
    Available Online: 19 July 2015

    Fund Project: This work was supported by the National Natural Science Foundation of China (No. 21272265) (No. 21272265)

  • Based on the similarities in the conformation of VS008 (N-(4-methylphenyl)-3-(tert-butyl)-1-(phenylmethyl)-1H-pyrazole-5-carboxamide) and BYIO6830 (N'-(3,5-dimethylbenzoyl)-N'-tert-butyl-5-methyl-2,3-dihydro-1,4-benzodioxine-6-carbohydrazide) bound to the active site of the EcR subunit of the ecdysone receptor (EcR)-ultraspiracle protein (USP) heterodimeric receptor, a series of new pyrazole amide derivatives were designed and synthesized. Their structures were confirmed by IR, 1H NMR, 13C NMR and elemental analysis. Results from a preliminary bioassay revealed that two of the pyrazole derivatives exhibited promising insecticidal activity. Specifically, compounds 6e and 6i exhibited good activity against Helicoverpa armigera (cotton bollworm) at low concentration. Symptoms displayed by tebufenozide-treated H. armigera were identical with those displayed by its treated counterpart. 6i showed the same poisoning symptoms as those of tebufenozide. In addition, results from molecular docking result indicated that the binding modes of 6e and 6i at the active site of the EcR subunit of the heterodimeric receptor were similar to that of the bound tebufenozide.
  • 加载中
    1. [1]

      [1] Y. Nakagawa, V.C. Henrich, Arthropod nuclear receptors and their role in molting, FEBS J. 276 (2009) 6128-6157.

    2. [2]

      [2] L.I. Gilbert, Halloween genes encode P450 enzymes that mediate steroid hormone biosynthesis in Drosophila melanogaster, Mol. Cell. Endocrinol. 215 (2004) 1-10.

    3. [3]

      [3] R.J. Hill, I.M.L. Billas, F. Bonneton, L.D. Graham, M.C. Lawrence, Ecdysone receptors: from the Ashburner model to structural biology, Annu. Rev. Entomol. 58 (2013) 251-271.

    4. [4]

      [4] K.D. Wing, RH-5849, a nonsteroidal ecdysone agonist: effects on a drosophila cell line, Science 241 (1988) 467-469.

    5. [5]

      [5] T.S. Dhadialla, R.K. Jansson, Non-steroidal ecdysone agonists: new tools for IPM and insect resistance management, Pestic. Sci. 55 (1999) 357-359.

    6. [6]

      [6] G.R. Carlson, T.S. Dhadialla, R. Hunter, et al., The chemical and biological properties of methoxyfenozide, a new insecticidal ecdysteroid agonist, Pest Manag. Sci. 57 (2001) 115-119.

    7. [7]

      [7] Y. Sawada, T. Yanai, H. Nakagawa, et al., Synthesis and insecticidal activity of benzoheterocyclic analogues of N'-benzoyl-N-(tert-butyl)benzohydrazide: part 2. Introduction of substituents on the benzene rings of the benzoheterocycle moiety, Pest Manag. Sci. 59 (2003) 36-48.

    8. [8]

      [8] G. Holmwood, M. Schindler, Protein structure based rational design of ecdysone agonists, Bioorg. Med. Chem. 17 (2009) 4064-4070.

    9. [9]

      [9] T. Harada, Y. Nakagawa, T. Ogura, et al., Virtual screening for ligands of the insect molting hormone receptor, J. Chem. Inf. Model. 51 (2011) 296-305.

    10. [10]

      [10] Y. Bin, Design, Synthesis and Bioactivity of Novel IGRs Lead Compound Based on EcR/USP Structure, (Master dissertation), China Agricultural University, Beijing, 2011.

    11. [11]

      [11] Y.F. Sun, H.L. Qiao, Y. Ling, et al., New analogues of (E)-β-farnesene with insecticidal activity and binding affinity to aphid odorant-binding proteins, J. Agric. Food Chem. 59 (2011) 2456-2461.

    12. [12]

      [12] W.L. Dong, J.Y. Xu, L.X. Xiong, X.H. Liu, Z.M. Li, Synthesis, structure and biological activities of some novel anthranilic acid esters containing N-pyridylpyrazole, Chin. J. Org. Chem. 27 (2009) 579-586.

    13. [13]

      [13] J.W. Zhang, Y.Q. Li, X.L. Yang, et al., Synthesis and bioactivities of nucleoside compounds containing substituted benzoyl carbamate thiourea, Chin. J. Org. Chem. 33 (2013) 305-311.

    14. [14]

      [14] X. Liu, L. Zhang, J.G. Tan, H.H. Xu, Design and synthesis of N-alkyl-N'-substituted 2,4-dioxo-3,4-dihydropyrimidin-1-diacylhydrazine derivatives as ecdysone receptor agonist, Bioorg. Med. Chem. 21 (2013) 4687-4697.

    15. [15]

      [15] Molecular Operating Environment (MOE), 2013.08; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2013.

    16. [16]

      [16] D.A. Case, T.A. Darden, T.E. Cheatham Ⅲ, et al., AMBER 12, University of California, San Francisco, 2012.

    17. [17]

      [17] M. Tohnishi, H. Nakao, T. Furuya, et al., Flubendiamide, a novel insecticide highly active against lepidopterous insect pests, J. Pestic. Sci. 30 (2005) 354-360.

    18. [18]

      [18] R. Nauen, Insecticide mode of action: return of the ryanodine receptor, Pest Manag. Sci. 62 (2006) 690-692.

    19. [19]

      [19] G. Smagghe, D. Degheele, Action of a novel nonsteroidal ecdysteroid mimic, tebufenozide (Rh-5992), on insects of different orders, Pestic. Sci. 42 (1994) 85-92.

  • 加载中
    1. [1]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    2. [2]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    3. [3]

      Jiajia LvJie GaoHongyu LiZeli YuanNan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940

    4. [4]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    5. [5]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

    6. [6]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    7. [7]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    8. [8]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    9. [9]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    10. [10]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    11. [11]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    12. [12]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    13. [13]

      Shengdong Sun Cheng Wang Shikuo Li . Interfacial channel design on the charge migration for photoelectrochemical applications. Chinese Journal of Structural Chemistry, 2024, 43(12): 100398-100398. doi: 10.1016/j.cjsc.2024.100398

    14. [14]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    15. [15]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    16. [16]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    17. [17]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    18. [18]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    19. [19]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    20. [20]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

Metrics
  • PDF Downloads(0)
  • Abstract views(626)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return