Citation: Chao Guan, Hong Yu. Hydrophilic interaction liquid chromatography with indirect ultraviolet detection for the separation and quantification of pyrrolidinium ionic liquid cations[J]. Chinese Chemical Letters, ;2015, 26(11): 1371-1375. doi: 10.1016/j.cclet.2015.08.004 shu

Hydrophilic interaction liquid chromatography with indirect ultraviolet detection for the separation and quantification of pyrrolidinium ionic liquid cations

  • Corresponding author: Hong Yu, 
  • Received Date: 20 March 2015
    Available Online: 7 May 2015

  • A method of hydrophilic interaction liquid chromatography with indirect ultraviolet detection was developed to determine three pyrrolidinium ionic liquid cations, i.e. N-methyl-N-ethyl pyrrolidinium cation ([MEPy]+), N-methyl-N-propyl pyrrolidinium cation ([MPPy]+) and N-methyl-N-butyl pyrrolidinium cation ([MBPy]+). Chromatographic separation was achieved on a hydrophilic column using imidazolium ionic liquids and organic solvents as the mobile phase. The effects of the background ultraviolet absorption reagents, the imidazolium ionic liquids, detection wavelength, organic solvents, column temperature and the pH value of the mobile phase on the separation and determination of pyrrolidinium cations were investigated and the retention behaviors in hydrophilic interaction chromatography were discussed. The optimized chromatographic conditions were selected. Under the optimal conditions, the detection limits (S/N = 3) for [MEPy]+, [MPPy]+ and [MBPy]+ were 0.59, 0.53 and 0.46 mg/L, respectively. The method has been successfully applied to the determination of the three ionic liquids synthesized in our chemistry laboratory. This research results may improve the analytical method of ionic liquid cations.
  • 加载中
    1. [1]

      [1] Z.S. Gao, S. Sun, W. Li, et al., An efficient ionic liquid supported divergent assembly of 3,6-branched glucosamine-containing pentasaccharide, Chin. Chem. Lett. 25 (2014) 1525-1530.

    2. [2]

      [2] Y.J. Ma, M. Li, H. Yu, R.S. Li, Fast analysis of thiocyanate by ion-pair chromatography with direct conductivity detection on a monolithic column, Chin. Chem. Lett. 24 (2013) 1067-1069.

    3. [3]

      [3] T.D. Ho, C. Zhang, L.W. Hantao, J.L. Anderson, Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives, Anal. Chem. 86 (2014) 262-285.

    4. [4]

      [4] M.J. Ruiz-Angel, A. Berthod, Reversed-phase liquid chromatography analysis of alkyl-imidazolium ionic liquids: II. Effects of different added salts and stationary phase influence, J. Chromatogr. A 1189 (2008) 476-482.

    5. [5]

      [5] H. Yu, Y.M. Sun, C.M. Zou, Imidazolium ionic liquid as the background ultraviolet absorption reagent for determination of morpholinium cations by high performance liquid chromatography-indirect ultraviolet detection, Chin. Chem. Lett. 25 (2014) 1371-1374.

    6. [6]

      [6] C.M. Zou, H. Yu, M.Y. Wang, Determination of tetraethyl ammonium by ion-pair chromatography with indirect ultraviolet detection using 4-aminophenol hydrochloride as background ultraviolet absorbing reagent, Chin. Chem. Lett. 25 (2014) 201-204.

    7. [7]

      [7] Q. Chen, H. Yu, J.F. Wang, Determination of pyridinium ionic liquid cations by ion chromatography with direct conductivity detection, J. Liq. Chromatogr. Relat. Technol. 35 (2012) 1184-1193.

    8. [8]

      [8] G. Le Rouzo, C. Lamouroux, C. Bresson, et al., Hydrophilic interaction liquid chromatography for separation and quantification of selected room-temperature ionic liquids, J. Chromatogr. A 1164 (2007) 139-144.

    9. [9]

      [9] C. Lamouroux, G. Foglia, G. Le Rouzo, How to separate ionic liquids: use of hydrophilic interaction liquid chromatography and mixed mode phases, J. Chromatogr. A 1218 (2011) 3022-3028.

    10. [10]

      [10] A.J. Alpert, Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds, J. Chromatogr. 499 (1990) 177-196.

    11. [11]

      [11] Y. An, H. Yu, C.M. Zou, Rapid determination of pyrrolidinium ionic liquid cations by monolithic column-ion-pair chromatography with indirect ultraviolet detection, Chin. J. Anal. Chem. 41 (2013) 1057-1062.

    12. [12]

      [12] R.Q. Zhang, H. Yu, X.J. Sun, Separation and determination of pyrrolidinium ionic liquid cations by ion chromatography with direct conductivity detection, Chin. Chem. Lett. 24 (2013) 503-505.

    13. [13]

      [13] S.L. Da, Indirect photometric high-performance liquid chromatography, Chin. J. Anal. Chem. 17 (1989) 372-381.

    14. [14]

      [14] X.J. Dai, Y. He, Y.M. Wei, B.L. Gong, A novel hydrophilic polystyrene-based beads for hydrophilic interaction chromatography by surface-initiated atom transfer radical polymerization, Chin. Chem. Lett. 22 (2011) 245-248.

    15. [15]

      [15] R.P. Li, Q. Yuan, Y.P. Huang, Hydrophilic interaction chromatography on silica column: retention mechanism and its influential factors, Chin. J. Chromatogr. 32 (2014) 675-681.

    16. [16]

      [16] M.L. Zhang, X.J. Liang, S.X. Jiang, H.D. Qiu, Preparation and applications of surfaceconfined ionic-liquid stationary phases for liquid chromatography, Trends Anal. Chem. 53 (2014) 60-72.

  • 加载中
    1. [1]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    2. [2]

      Saisai YuanYiming ChenXijuan WangDegui ZhaoTengyang GaoCaiyun WeiChuanxiang ChenYang YangWenjing Hong . Decouple the intermolecular interaction by encapsulating an insulating sheath. Chinese Chemical Letters, 2025, 36(6): 110816-. doi: 10.1016/j.cclet.2025.110816

    3. [3]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    4. [4]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    5. [5]

      Xinyi ZhaoYuai DuanZihan LiuHua GengYaping LiZhongfeng LiTianyu Han . Mapping sweat pores for biometric identification based on a donor-acceptor hydrophilic fluorescent probe. Chinese Chemical Letters, 2025, 36(8): 110617-. doi: 10.1016/j.cclet.2024.110617

    6. [6]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

    7. [7]

      Wenya ChiRuiyao LiuWenbo ZhouWeilin LiYuan Yu . The mechanisms of interaction between biomaterials and cells/cellular microenvironment and the applications in neural injuries. Chinese Chemical Letters, 2025, 36(8): 110587-. doi: 10.1016/j.cclet.2024.110587

    8. [8]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    9. [9]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    10. [10]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    11. [11]

      Wen SuSiying LiuQingfu ZhangZhongyan ZhouNa WangLei Yue . Temperature-controlled electrospray ionization tandem mass spectrometry study on protein/small molecule interaction. Chinese Chemical Letters, 2025, 36(5): 110237-. doi: 10.1016/j.cclet.2024.110237

    12. [12]

      Yanyu JinWenzhe SiXing YuanHongjun ChengBin ZhouLi CaiYu WangQibao WangJunhua Li . Tuning TM–O interaction by acid etching in perovskite catalysts boosting catalytic performance. Chinese Chemical Letters, 2025, 36(5): 110260-. doi: 10.1016/j.cclet.2024.110260

    13. [13]

      Ruofan QiJing ZhangWang SunBai YuZhenhua WangKening Sun . Solid-acid-Lewis-base interaction accelerates lithium ion transport for uniform lithium deposition. Chinese Chemical Letters, 2025, 36(6): 110009-. doi: 10.1016/j.cclet.2024.110009

    14. [14]

      Doudou LiuWeiwei GuoGuoliang MeiYoupeng DanRong YangChao HuangYanling ZhaiXiaoquan Lu . Application of catalyst Cu-t-ZrO2 based on the electronic metal-support interaction in electrocatalytic nitrate reduction. Chinese Chemical Letters, 2025, 36(8): 110578-. doi: 10.1016/j.cclet.2024.110578

    15. [15]

      Huipeng LiXue YangMinjie Sun . Self-strengthened cascade-explosive nanogel using host-guest interaction strategy for synergistic tumor treatment. Chinese Chemical Letters, 2025, 36(8): 110651-. doi: 10.1016/j.cclet.2024.110651

    16. [16]

      Wantong ZhangZixing XuGuofei DaiZhijian LiChunhui Deng . Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35(5): 109135-. doi: 10.1016/j.cclet.2023.109135

    17. [17]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    18. [18]

      Heng GaoZhaocong ChengGuangshui TuZonglin QiuXieyi XiaoHaotian ZhouHandou ZhengHaiyang Gao . Thermally robust bis(imino)pyridyl iron catalysts for ethylene polymerization: Synergy effects of weak π-π interaction, steric bulk, and electronic tuning. Chinese Chemical Letters, 2025, 36(5): 110762-. doi: 10.1016/j.cclet.2024.110762

    19. [19]

      Ran ZhuPan ZhangYitong XuJiutong MaQiong Jia . Design of host-guest interaction based molecularly imprinted polymers: Targeting recognition of the epitope of neuron-specific enolase via a SERS assay. Chinese Chemical Letters, 2025, 36(6): 110259-. doi: 10.1016/j.cclet.2024.110259

    20. [20]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

Metrics
  • PDF Downloads(0)
  • Abstract views(1246)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return