Citation:
Si-Yang Mu, Jing Guo, Yu-Mei Gong, Sen Zhang, Yue Yu. Synthesis and thermal properties of poly(styrene-co-acrylonitrile)- graft-polyethylene glycol copolymers as novel solid-solid phase change materials for thermal energy storage[J]. Chinese Chemical Letters,
;2015, 26(11): 1364-1366.
doi:
10.1016/j.cclet.2015.07.013
-
A novel poly(styrene-co-acrylonitrile)-graft-polyethylene glycol (SAN-g-PEG) copolymer was synthesized as new solid-solid phase change materials (SSPCMs) by grafting PEG to the main chain of poly(styrene-co-acrylonitrile). The chemical structure of the SAN-g-PEG was confirmed by the Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance (1H NMR) spectroscopy techniques. The thermal energy storage properties and the storage durability of the SAN-g-PEG were investigated by differential scanning calorimetry (DSC). The SAN-g-PEG was endowed with the solid- solid phase transition temperatures within the range of 23-36 ℃ and the latent heat enthalpy ranged from 66.8 kJ/kg to 68.3 kJ/kg. Thermal cycling tests revealed that the SAN-g-PEG kept great heat storage durability after 1000 thermal cycles. The thermal stabilitywas evaluated by a thermal gravity analysis (TGA), and the initial decomposition temperature (Td) of SAN-g-PEG is 350 ℃, which proves that the SAN-g-PEG possessed good thermal stability.
-
Keywords:
- Phase change material
-
-
-
[1]
[1] C.Z. Chen, L.G. Wang, Y. Huang, Crosslinking of the electrospun polyethylene glycol/cellulose acetate composite fibers as shape-stabilized phase change materials, Mater. Lett. 63 (2009) 569-571.
-
[2]
[2] C. Liu, Y.P. Yuan, N. Zhang, X.L. Cao, X.J. Yang, A novel PCM of lauric-myristic- stearic acid/expanded graphite composite for thermal energy storage, Mater. Lett. 120 (2014) 43-46.
-
[3]
[3] A. Biçer, A. Sarı, Synthesis and thermal energy storage properties of xylitol pentastearate and xylitol pentapalmitate as novel solid-liquid PCMs, Sol. Energy Mater. Sol. Cell. 102 (2012) 125-130.
-
[4]
[4] A. Sarı, A. Biçer, Preparation and thermal energy storage properties of building material-based composites as novel form-stable PCMs, Energy Build. 51 (2012) 73-83.
-
[5]
[5] C.Z. Chen, L.G. Wang, Y. Huang, Ultrafine electrospun fibers based on stearyl stearate/polyethylene terephthalate composite as form stable phase change materials, Chem. Eng. J. 150 (2009) 269-274.
-
[6]
[6] A. Sarı, C. Alkan, A. Biçer, Synthesis and thermal properties of polystyrene-graft- PEG copolymers as new kinds of solid-solid phase change materials for thermal energy storage, Mater. Chem. Phys. 133 (2012) 87-94.
-
[7]
[7] Y.B. Cai, X.L. Xu, C.T. Gao, et al., Structural morphology and thermal performance of composite phase change materials consisting of capric acid series fatty acid eutectics and electrospun polyamide6 nanofibers for thermal energy storage, Mater. Lett. 89 (2012) 43-46.
-
[8]
[8] F. Kuznik, D. David, K. Johannes, J.-J. Roux, A review on phase change materials integrated in building walls, Renew. Sustain. Energy Rev. 15 (2011) 379-391.
-
[9]
[9] C. Alkan, Ö .F. Ensari, D. Kahraman, Poly (2-alkyloyloxyethylacrylate) and poly (2-alkyloyloxyethylacrylate-co-methylacrylate) comblike polymers as novel phase-change materials for thermal energy storage, J. Appl. Polym. Sci. 126 (2012) 631-640.
-
[10]
[10] J. Guo, H.X. Xiang, X.Y. Gong, Y.P. Zhang, Preparation and performance of the hydrolyzate of waste polyacrylonitrile fiber/poly (ethylene glycol) graft copolymerization, Energy Sour., Part A: Recov., Utilizat., Environ. Effects 33 (2011) 1067-1075.
-
[11]
[11] J. Guo, H.X. Xiang, Q.Q. Wang, et al., Preparation of poly (decaglycerol-co-ethylene glycol) copolymer as phase change material, Energy Build. 48 (2012) 206-210.
-
[12]
[12] J. Guo, P. Xie, X. Zhang, et al., Synthesis and characterization of graft copolymer of polyacrylonitrile-g-polyethylene glycol-maleic acid monoester macromonomer, J. Appl. Polym. Sci. 131 (2014) 40152.
-
[13]
[13] A. Sarı, C. Alkan, Ö . Lafçı, Synthesis and thermal properties of poly (styreneco- allyalcohol)-graft-stearic acid copolymers as novel solid-solid PCMs for thermal energy storage, Sol. Energy 86 (2012) 2282-2292.
-
[14]
[14] Y.X. Li, R.G. Liu, Y. Huang, Synthesis and phase transition of cellulose-graft-poly (ethylene glycol) copolymers, J. Appl. Polym. Sci. 110 (2008) 1797-1803.
-
[15]
[15] X.P. Yuan, E.Y. Ding, Synthesis and characterization of storage energy materials prepared from nano-crystalline cellulose/polyethylene glycol, Chin. Chem. Lett. 17 (2006) 1129-1132.
-
[16]
[16] A. Sarı, C. Alkan, A. Biçer, A. Karaipekli, Synthesis and thermal energy storage characteristics of polystyrene-graft-palmitic acid copolymers as solid-solid phase change materials, Sol. Energy Mater. Sol. Cell. 95 (2011) 3195-3201.
-
[17]
[17] J. Hu, H. Yu, Y.M. Chen, M.F. Zhu, Study on phase-change characteristics of PET-PEG copolymers, J. Macromol. Sci., Part B: Phys. 45 (2006) 615-621.
-
[1]
-
-
-
[1]
Hao Sun , Xiaoxue Li , Baoyu Wu , Kai Zhu , Yinyi Gao , Tianzeng Bao , Hongbin Wu , Dianxue Cao . Direct regeneration of spent LiFePO4 cathode material via a simple solid-phase method. Chinese Chemical Letters, 2025, 36(6): 110041-. doi: 10.1016/j.cclet.2024.110041
-
[2]
Dongping Song , Tao Tu . The role of oceanic carbon pumps in Earth’s climate system: Impact and feedback under climate change. Chinese Chemical Letters, 2025, 36(8): 111300-. doi: 10.1016/j.cclet.2025.111300
-
[3]
Xinguo Mao , Shuo Zhang , Qiang Shi , Hua Cheng , Leyong Wang . Macrocyclic host molecules: Rising as a promising supramolecular material. Chinese Chemical Letters, 2025, 36(6): 110950-. doi: 10.1016/j.cclet.2025.110950
-
[4]
Yan-Ran Weng , Wen-Fu Tian , Wen-Jing Ding , Bi-He Ren , De-Hou Liu , Jia-Ying Tang , Feng Zhou , Xiao-Gang Chen , Xian-Jiang Song , Hui-Peng Lv , Yong Ai . Homochiral organic ferroelastics with plastic phase transition. Chinese Chemical Letters, 2025, 36(7): 110188-. doi: 10.1016/j.cclet.2024.110188
-
[5]
Yunzhe Zheng , Si Sun , Jiali Liu , Qingyu Zhao , Heng Zhang , Jing Zhang , Peng Zhou , Zhaokun Xiong , Chuan-Shu He , Bo Lai . Application of machine learning for material prediction and design in the environmental remediation. Chinese Chemical Letters, 2025, 36(9): 110722-. doi: 10.1016/j.cclet.2024.110722
-
[6]
Pengcheng Su , Shizheng Chen , Zhihong Yang , Ningning Zhong , Chenzi Jiang , Wanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357
-
[7]
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
-
[8]
Bo-Bo Zou , Hong-Jie Peng . Phase diagram as a lens for unveiling thermodynamics trends in lithium–sulfur batteries. Chinese Chemical Letters, 2025, 36(7): 110986-. doi: 10.1016/j.cclet.2025.110986
-
[9]
Shifang Song , Chenyu Wu , Li Zhang , Dezhi Yang , Yang Lu , Zhengzheng Zhou . Unpacking phase transitions in multi-component drug systems: A case study. Chinese Chemical Letters, 2025, 36(7): 110911-. doi: 10.1016/j.cclet.2025.110911
-
[10]
Hongping Zhao , Hanzhaobing Wu , Baolong Shi , Jiayue Wang , Chunzheng Wu , Chaohai Wang , Xiaoyan Wang , Wei Liu , Chaoqing Dai , Dalei Wang . Fast and controllable anatase-to-rutile phase transition irradiated by NIR light. Chinese Chemical Letters, 2025, 36(11): 110815-. doi: 10.1016/j.cclet.2025.110815
-
[11]
Mengjia Luo , Yi Qiu , Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446
-
[12]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[13]
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
-
[14]
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
-
[15]
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
-
[16]
Jingxuan Liu , Shiqi Zhao , Xiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059
-
[17]
Zhiqing Ge , Zuxiong Pan , Shuo Yan , Baoying Zhang , Xiangyu Shen , Mozhen Wang , Xuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850
-
[18]
Min LUO , Xiaonan WANG , Yaqin ZHANG , Tian PANG , Fuzhi LI , Pu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205
-
[19]
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277
-
[20]
Renyuan Wang , Lei Ke , Houxiang Wang , Yueheng Tao , Yujie Cui , Peipei Zhang , Minjie Shi , Xingbin Yan . Facile synthesis of phenazine-conjugated polymer material with extraordinary proton-storage redox capability. Chinese Chemical Letters, 2025, 36(5): 109920-. doi: 10.1016/j.cclet.2024.109920
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1300)
- HTML views(25)
Login In
DownLoad: