Citation: Si-Yang Mu, Jing Guo, Yu-Mei Gong, Sen Zhang, Yue Yu. Synthesis and thermal properties of poly(styrene-co-acrylonitrile)- graft-polyethylene glycol copolymers as novel solid-solid phase change materials for thermal energy storage[J]. Chinese Chemical Letters, ;2015, 26(11): 1364-1366. doi: 10.1016/j.cclet.2015.07.013 shu

Synthesis and thermal properties of poly(styrene-co-acrylonitrile)- graft-polyethylene glycol copolymers as novel solid-solid phase change materials for thermal energy storage

  • Corresponding author: Jing Guo, 
  • Received Date: 28 May 2015
    Available Online: 26 June 2015

  • A novel poly(styrene-co-acrylonitrile)-graft-polyethylene glycol (SAN-g-PEG) copolymer was synthesized as new solid-solid phase change materials (SSPCMs) by grafting PEG to the main chain of poly(styrene-co-acrylonitrile). The chemical structure of the SAN-g-PEG was confirmed by the Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance (1H NMR) spectroscopy techniques. The thermal energy storage properties and the storage durability of the SAN-g-PEG were investigated by differential scanning calorimetry (DSC). The SAN-g-PEG was endowed with the solid- solid phase transition temperatures within the range of 23-36 ℃ and the latent heat enthalpy ranged from 66.8 kJ/kg to 68.3 kJ/kg. Thermal cycling tests revealed that the SAN-g-PEG kept great heat storage durability after 1000 thermal cycles. The thermal stabilitywas evaluated by a thermal gravity analysis (TGA), and the initial decomposition temperature (Td) of SAN-g-PEG is 350 ℃, which proves that the SAN-g-PEG possessed good thermal stability.
  • 加载中
    1. [1]

      [1] C.Z. Chen, L.G. Wang, Y. Huang, Crosslinking of the electrospun polyethylene glycol/cellulose acetate composite fibers as shape-stabilized phase change materials, Mater. Lett. 63 (2009) 569-571.

    2. [2]

      [2] C. Liu, Y.P. Yuan, N. Zhang, X.L. Cao, X.J. Yang, A novel PCM of lauric-myristic- stearic acid/expanded graphite composite for thermal energy storage, Mater. Lett. 120 (2014) 43-46.

    3. [3]

      [3] A. Biçer, A. Sarı, Synthesis and thermal energy storage properties of xylitol pentastearate and xylitol pentapalmitate as novel solid-liquid PCMs, Sol. Energy Mater. Sol. Cell. 102 (2012) 125-130.

    4. [4]

      [4] A. Sarı, A. Biçer, Preparation and thermal energy storage properties of building material-based composites as novel form-stable PCMs, Energy Build. 51 (2012) 73-83.

    5. [5]

      [5] C.Z. Chen, L.G. Wang, Y. Huang, Ultrafine electrospun fibers based on stearyl stearate/polyethylene terephthalate composite as form stable phase change materials, Chem. Eng. J. 150 (2009) 269-274.

    6. [6]

      [6] A. Sarı, C. Alkan, A. Biçer, Synthesis and thermal properties of polystyrene-graft- PEG copolymers as new kinds of solid-solid phase change materials for thermal energy storage, Mater. Chem. Phys. 133 (2012) 87-94.

    7. [7]

      [7] Y.B. Cai, X.L. Xu, C.T. Gao, et al., Structural morphology and thermal performance of composite phase change materials consisting of capric acid series fatty acid eutectics and electrospun polyamide6 nanofibers for thermal energy storage, Mater. Lett. 89 (2012) 43-46.

    8. [8]

      [8] F. Kuznik, D. David, K. Johannes, J.-J. Roux, A review on phase change materials integrated in building walls, Renew. Sustain. Energy Rev. 15 (2011) 379-391.

    9. [9]

      [9] C. Alkan, Ö .F. Ensari, D. Kahraman, Poly (2-alkyloyloxyethylacrylate) and poly (2-alkyloyloxyethylacrylate-co-methylacrylate) comblike polymers as novel phase-change materials for thermal energy storage, J. Appl. Polym. Sci. 126 (2012) 631-640.

    10. [10]

      [10] J. Guo, H.X. Xiang, X.Y. Gong, Y.P. Zhang, Preparation and performance of the hydrolyzate of waste polyacrylonitrile fiber/poly (ethylene glycol) graft copolymerization, Energy Sour., Part A: Recov., Utilizat., Environ. Effects 33 (2011) 1067-1075.

    11. [11]

      [11] J. Guo, H.X. Xiang, Q.Q. Wang, et al., Preparation of poly (decaglycerol-co-ethylene glycol) copolymer as phase change material, Energy Build. 48 (2012) 206-210.

    12. [12]

      [12] J. Guo, P. Xie, X. Zhang, et al., Synthesis and characterization of graft copolymer of polyacrylonitrile-g-polyethylene glycol-maleic acid monoester macromonomer, J. Appl. Polym. Sci. 131 (2014) 40152.

    13. [13]

      [13] A. Sarı, C. Alkan, Ö . Lafçı, Synthesis and thermal properties of poly (styreneco- allyalcohol)-graft-stearic acid copolymers as novel solid-solid PCMs for thermal energy storage, Sol. Energy 86 (2012) 2282-2292.

    14. [14]

      [14] Y.X. Li, R.G. Liu, Y. Huang, Synthesis and phase transition of cellulose-graft-poly (ethylene glycol) copolymers, J. Appl. Polym. Sci. 110 (2008) 1797-1803.

    15. [15]

      [15] X.P. Yuan, E.Y. Ding, Synthesis and characterization of storage energy materials prepared from nano-crystalline cellulose/polyethylene glycol, Chin. Chem. Lett. 17 (2006) 1129-1132.

    16. [16]

      [16] A. Sarı, C. Alkan, A. Biçer, A. Karaipekli, Synthesis and thermal energy storage characteristics of polystyrene-graft-palmitic acid copolymers as solid-solid phase change materials, Sol. Energy Mater. Sol. Cell. 95 (2011) 3195-3201.

    17. [17]

      [17] J. Hu, H. Yu, Y.M. Chen, M.F. Zhu, Study on phase-change characteristics of PET-PEG copolymers, J. Macromol. Sci., Part B: Phys. 45 (2006) 615-621.

  • 加载中
    1. [1]

      Hao SunXiaoxue LiBaoyu WuKai ZhuYinyi GaoTianzeng BaoHongbin WuDianxue Cao . Direct regeneration of spent LiFePO4 cathode material via a simple solid-phase method. Chinese Chemical Letters, 2025, 36(6): 110041-. doi: 10.1016/j.cclet.2024.110041

    2. [2]

      Dongping SongTao Tu . The role of oceanic carbon pumps in Earth’s climate system: Impact and feedback under climate change. Chinese Chemical Letters, 2025, 36(8): 111300-. doi: 10.1016/j.cclet.2025.111300

    3. [3]

      Xinguo MaoShuo ZhangQiang ShiHua ChengLeyong Wang . Macrocyclic host molecules: Rising as a promising supramolecular material. Chinese Chemical Letters, 2025, 36(6): 110950-. doi: 10.1016/j.cclet.2025.110950

    4. [4]

      Yan-Ran WengWen-Fu TianWen-Jing DingBi-He RenDe-Hou LiuJia-Ying TangFeng ZhouXiao-Gang ChenXian-Jiang SongHui-Peng LvYong Ai . Homochiral organic ferroelastics with plastic phase transition. Chinese Chemical Letters, 2025, 36(7): 110188-. doi: 10.1016/j.cclet.2024.110188

    5. [5]

      Yunzhe ZhengSi SunJiali LiuQingyu ZhaoHeng ZhangJing ZhangPeng ZhouZhaokun XiongChuan-Shu HeBo Lai . Application of machine learning for material prediction and design in the environmental remediation. Chinese Chemical Letters, 2025, 36(9): 110722-. doi: 10.1016/j.cclet.2024.110722

    6. [6]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    7. [7]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    8. [8]

      Bo-Bo ZouHong-Jie Peng . Phase diagram as a lens for unveiling thermodynamics trends in lithium–sulfur batteries. Chinese Chemical Letters, 2025, 36(7): 110986-. doi: 10.1016/j.cclet.2025.110986

    9. [9]

      Shifang SongChenyu WuLi ZhangDezhi YangYang LuZhengzheng Zhou . Unpacking phase transitions in multi-component drug systems: A case study. Chinese Chemical Letters, 2025, 36(7): 110911-. doi: 10.1016/j.cclet.2025.110911

    10. [10]

      Hongping ZhaoHanzhaobing WuBaolong ShiJiayue WangChunzheng WuChaohai WangXiaoyan WangWei LiuChaoqing DaiDalei Wang . Fast and controllable anatase-to-rutile phase transition irradiated by NIR light. Chinese Chemical Letters, 2025, 36(11): 110815-. doi: 10.1016/j.cclet.2025.110815

    11. [11]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

    12. [12]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    13. [13]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    14. [14]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    15. [15]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    16. [16]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    17. [17]

      Zhiqing GeZuxiong PanShuo YanBaoying ZhangXiangyu ShenMozhen WangXuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850

    18. [18]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    19. [19]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    20. [20]

      Renyuan WangLei KeHouxiang WangYueheng TaoYujie CuiPeipei ZhangMinjie ShiXingbin Yan . Facile synthesis of phenazine-conjugated polymer material with extraordinary proton-storage redox capability. Chinese Chemical Letters, 2025, 36(5): 109920-. doi: 10.1016/j.cclet.2024.109920

Metrics
  • PDF Downloads(0)
  • Abstract views(1301)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return