Citation: Hui-Jiao Wen, Qing Chen, Guo-Jun Zheng. Enantioselective synthesis of (1S,4R)-N-(benzylcarbamoyl)-4-aminocyclopent-2-en-1-ol by Candida antarctica lipase B[J]. Chinese Chemical Letters, ;2015, 26(11): 1431-1434. doi: 10.1016/j.cclet.2015.07.005 shu

Enantioselective synthesis of (1S,4R)-N-(benzylcarbamoyl)-4-aminocyclopent-2-en-1-ol by Candida antarctica lipase B

  • Corresponding author: Guo-Jun Zheng, 
  • Received Date: 15 April 2015
    Available Online: 24 June 2015

  • An efficient biocatalytic process has been developed to obtain optically pure (1S,4R)-N-(benzylcarbamoyl)- 4-aminocyclopent-2-en-1-ol which can be used as the key intermediate of ticagrelor. In this research, several N-(benzylcarbamoyl)-4-aminocyclopent-2-en-1-ol derivatives have been investigated in which Candida antarctica lipase B (CALB) was used to catalyze the asymmetric hydrolysis reaction. As expected, some of these substrates successfully gave (1S,4R)-N-(benzylcarbamoyl)-4-aminocyclopent- 2-en-1-ol in >98% enantiomeric excess (ee) with conversion yields up to 45%.
  • 加载中
    1. [1]

      [1] F. Burlina, A. Favre, J.L. Fourrey, M. Thomas, An expeditious route to carbocyclic nucleosides: (61)-aristeromycin and (61)-carbodine, Bioorg. Med. Chem. Lett. 7 (1997) 247-250.

    2. [2]

      [2] K.H. Park, H. Rapoport, Enantioselective synthesis of (1R,4S)-1-amino-4-(hydroxymethyl)- 2-cyclopentene, a precursor for carbocyclic nucleoside synthesis, J. Org. Chem. 59 (1994) 394-399.

    3. [3]

      [3] B.M. Trost, D. Stenkamp, S.R. Pulley, An enantioselective synthesis of cis-4-tertbutoxycarbamoyl- 1-methoxycarbonyl-2-cyclopentene—a useful, general building block, Chem. A: Eur. J. 1 (1995) 568-572.

    4. [4]

      [4] T. Ando, K. Kojima, P. Chahota, et al., Synthesis of 4'-modified noraristeromycins to clarify the effect of the 4'-hydroxyl groups for inhibitory activity against S-adenosyl-L-homocysteine hydrolase, Bioorg. Med. Chem. Lett. 18 (2008) 2615-2618.

    5. [5]

      [5] N.G. Ramesh, A.J. Klunder, B. Zwanenburg, Enantioselective synthesis of 4-acetylaminocyclopent- 2-en-1-ols from tricyclo[5.2.1.0(2, 6)]decenyl enaminones. Precursors for 5'-norcarbocyclic nucleosides and related antiviral compounds, J. Org. Chem. 64 (1999) 3635-3641.

    6. [6]

      [6] P.F. Vogt, J.G. Hansel, M.J. Miller, Asymmetric synthesis of an important precursor to 5'-nor carbocyclic nucleosides, Tetrahedron Lett. 38 (1997) 2803-2804.

    7. [7]

      [7] D. Zhang, A. Ghosh, C. Suling, et al., Efficient functionalization of acylnitroso cycloadducts: application to the syntheses of carbocyclic nucleoside precursors, Tetrahedron Lett. 37 (1996) 3799-3802.

    8. [8]

      [8] J.J.J. Van Giezen, L. Nilsson, P. Berntsson, et al., Ticagrelor binds to human P2Y (12) independently from ADP but antagonizes ADP-induced receptor signaling and platelet aggregation, J. Thromb. Haemostasis. 7 (2009) 1556-1565.

    9. [9]

      [9] B. Springthorpe, A. Bailey, P. Barton, From ATP to AZD6140: the discovery of an orally active reversible P2Y12 receptor antagonist for the prevention of thrombosis, Bioorg. Med. Chem. Lett. 17 (2007) 6013-6018.

    10. [10]

      [10] M. Arita, K. Adachi, Y. Ito, et al., Enantioselective synthesis of the carbocyclic nucleosides (-)-aristeromycin and (-)-neplanocin A by a chemicoenzymatic approach, J. Am. Chem. Soc. 105 (1983) 4049-4055.

    11. [11]

      [11] M. Ikbal, C. Cerceau, F. Le Goffic, et al., Synthè se des deux énantiomè res de l'analogue carbocyclique du nicotinamide ribose et évaluation de leurs proprié té s biologiques, Eur. J. Med. Chem. 24 (1989) 415-420.

    12. [12]

      [12] S. Saul, S. Corr, J. Micklefield, Biotransformations in low-boiling hydrofluorocarbon solvents, Angew. Chem. Int. Ed. 43 (2004) 5519-5523.

    13. [13]

      [13] J. Dauvergne, A.M. Happe, V. Jadhav, et al., Synthesis of 4-azacyclopent-2-enones and 5,5-dialkyl-4-azacyclopent-2-enones, Tetrahedron 60 (2004) 2559-2567.

    14. [14]

      [14] C.R. Johnson, S.J. Bis, Enzymatic asymmetrization of meso-2-cycloalken-1 4-diols and their diacetates in organic and aqueous media, Tetrahedron Lett. 33 (1992) 7287-7290.

    15. [15]

      [15] D. Zhang, M.J. Miller, Total synthesis of (±) carbocyclic polyoxin C and its α-epimer, J. Org. Chem. 63 (1998) 755-759.

    16. [16]

      [16] M.J. Mulvihill, J.L. Gage, M.J. Miller, Enzymatic resolution of aminocyclopentenols as precursors to D-and L-carbocyclic nucleosides, J. Org. Chem. 63 (1998) 3357-3363.

    17. [17]

      [17] E.M. Anderson, K.M. Larsson, O. Kirk, One biocatalyst - many applications: the use of Candida antarctica B-lipase in organic synthesis, Biocatal. Biotransform. 16 (1998) 181-204.

    18. [18]

      [18] L. Bollans, J. Bacsa, J.A. Iggo, et al., The acyl nitroso Diels-Alder (ANDA) reaction of sorbate derivatives: an X-ray and 15N NMR study with an application to aminoacid synthesis, Org. Biomol. Chem. 7 (2009) 4531-4538.

    19. [19]

      [19] Compound 2: 1H NMR (400 MHz, CDCl3): δ 7.47-7.09 (m, 5H), 5.97 (m, 2H), 5.55 (s, 1H), 5.11 (s, 2H), 4.85 (m, 1H), 4.76 (m, 1H), 2.84 (m, 1H), 2.30 (t, 2H), 1.56 (m, 1H), 1.17 (t, 3H). Compound 3: 1H NMR (400 MHz, CDCl3): d 7.61-7.24 (m, 5H), 5.98 (m, 2H), 5.55 (s, 1H), 5.11 (s, 2H), 4.83 (m, 1H), 4.69 (m, 1H), 2.97-2.65 (m, 1H), 2.29 (t, 2H), 1.70-1.48 (m, 3H), 0.98 (t, 3H). Compound 4: 1H NMR (400 MHz, CDCl3): δ 7.94-7.13 (m, 10H), 6.01 (m, 2H), 5.72 (s, 1H), 5.11 (s, 2H), 4.85(m, 1H), 4.75 (m, 1H), 2.97-2.85 (m, 1H), 1.65 (m, 1H).

    20. [20]

      [20] L. Werner, J.R. Hudlicky, M. Wernerova, et al., Synthesis of 1,2-and 1,4-amino alcohols from 1,3-dienes via oxazines. Rearrangements of 1,4-amino alcohol derivatives to oxazolines, Tetrahedron 66 (2010) 3761-3769.

    21. [21]

      [21] Analytical HPLC methods: the enantiomeric excess analysis was performed using a HPLC system (Shimadzu, Japan) equipped with a CHIRALPAK IF column (0.46 mm × 250 mm × 5 mm), elution with ethanol/hexane 15:85 v/v for compound 1, ethanol/hexane 25:75 v/v for compounds 2 and 3, ethanol/hexane 30:70 for compound 4.

  • 加载中
    1. [1]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    2. [2]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    3. [3]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    4. [4]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    5. [5]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    6. [6]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    7. [7]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    8. [8]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    9. [9]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    10. [10]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    11. [11]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    14. [14]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    17. [17]

      Dai-Huo LiuAo WangHong-Yan LüXing-Long WuDan LuoWen-Hao LiJin-Zhi GuoHaozhen DouQianyi MaZhongwei ChenIn situ constructing (MnS/Mn2SnS4)@N,S-ACTs heterostructure with superior Na/Li-storage capabilities in half-cells and pouch full-cells. Chinese Chemical Letters, 2024, 35(11): 109285-. doi: 10.1016/j.cclet.2023.109285

    18. [18]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    19. [19]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

Metrics
  • PDF Downloads(0)
  • Abstract views(671)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return