Citation: Koon-Kee Kow, Kamaliah Sirat. Novel manganese(II)-based deep eutectic solvents: Synthesis and physical properties analysis[J]. Chinese Chemical Letters, ;2015, 26(10): 1311-1314. doi: 10.1016/j.cclet.2015.05.049 shu

Novel manganese(II)-based deep eutectic solvents: Synthesis and physical properties analysis

  • Corresponding author: Koon-Kee Kow, 
  • Received Date: 26 February 2015
    Available Online: 19 May 2015

  • Type IV deep eutectic solvent (DES) involves the formation of metal-based eutectics from metal salts or metal salt hydrate incombination with various hydrogen-bonddonors(HBDs) suchas urea, ethylene glycol or acetamide. In current study, twodistinguished approaches were used to synthesize potential DESs, given as the direct heating and the evaporatingmethods. Successful synthesized DESswere subjected forphysical properties characterization by Fourier TransformInfrared (FTIR) Spectroscopy, thermal stability, viscosity, and conductivity analyses. Five novelmanganese (II)-basedDESswere successfully synthesized as reported in this study. Data obtained indicated that the MnCl2·4H2O·acetamide DES exhibits the lowest freezing point (27.5℃), highest thermal stability (193℃ point of dehydration), lowest viscosity (η=112.8 cP) and the highest conductivity (0.12723 mS/cm). The findings obtained reveal the characteristics, nature or features of synthesized DESs as potential industrial solvents.
  • 加载中
    1. [1]

      [1] P. Wasserschield, T. Welton, Ionic Liquids in Synthesis, Wiley-VCH, Weinheim, 2003.

    2. [2]

      [2] M.A. Kareem, F.S. Mjalli, M.A. Hashim, I.M. Alnashef, Phosphonium-based ionic liquids analogues and their physical properties, J. Chem. Eng. Data 55(2010) 4632-4637.

    3. [3]

      [3] J. Sun, M. Forsyth, D.R. MacFarlene, Room-temperature molten salts based on the quaternary ammonium ion, J. Phys. Chem. B 102(1998) 8858-8864.

    4. [4]

      [4] S.J. Zhang, Y.H. Chen, R.X.F. Ren, et al., Solubility of CO2 in sulfonate ionic liquids at high pressure, J. Chem. Eng. Data 50(2005) 230-233.

    5. [5]

      [5] A. Paiva, R. Craveiro, I. Aroso, et al., Natural deep eutectic solvents-solvents for the 21st century, ACS Sust. Chem. Eng. 2(2014) 1063-1071.

    6. [6]

      [6] C.M. Wang, X.Y. Luo, X. Zhu, et al., The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids, RSC Adv. 3(2013) 15518-15527.

    7. [7]

      [7] M.A. Navarra, J. Manzi, L. Lombardo, S. Panero, B. Scrosati, Ionic liquid-based membranes as electrolytes for advanced lithium polymer batteries, Chem-SusChem 4(2011) 125-130.

    8. [8]

      [8] X. Ge, C.D. Gu, Y. Lu, X.L. Wang, J.P. Tu, A Versatile protocol for the ionothermal synthesis of nanostructured nickel compounds as energy storage materials from a choline chloride-based ionic liquid, J. Mater. Chem. A 1(2013) 13454-13461.

    9. [9]

      [9] M. Hayyan, F.S. Mjalli, M.A. Hashim, I.M. Alnashef, X.M. Tan, Electrochemical reduction of dioxygen in bis (trifluoromethylsulfonyl) imide based Ionic liquids, J. Electroanal. Chem. 657(2011) 150-157.

    10. [10]

      [10] P.D. de María, Z. Maugeri, Ionic liquids in biotransformations:from proof-ofconcept to emerging deep-eutectic-solvents, Curr. Opin. Chem. Biol. 15(2011) 220-225.

    11. [11]

      [11] N.V. Plechkova, K.R. Seddon, Applications of ionic liquids in the chemical industry, Chem. Soc. Rev. 37(2008) 123-150.

    12. [12]

      [12] C. Ruß, B. König, Low melting mixtures in organic synthesis-an alternative to ionic liquids? Green Chem. 14(2012) 2969-2982.

    13. [13]

      [13] X. Ge, C.D. Gu, X.L. Wang, J.P. Tu, Endowing manganese oxide with fast adsorption ability through controlling the manganese carbonate precursor assembled in ionic liquid, J. Colloid Interface Sci. 438(2015) 149-158.

    14. [14]

      [14] D.V. Wagle, H. Zhao, G.A. Bakar, Deep eutectic solvents:sustainable media for nanoscale and functional materials, Acc. Chem. Res. 47(2014) 2299-2308.

    15. [15]

      [15] M. Hayyan, F.S. Mjalli, M.A. Hashim, I.M. Alnashef, An investigation of the reaction between 1-butyl-3-methylimidazolium trifluoromethanesulfonate and superoxide ion, J. Mol. Liq. 181(2013) 44-50.

    16. [16]

      [16] Y.S. Hu, Z.X. Wang, X.J. Huang, L.Q. Chen, Physical and electrochemical properties of new binary room-temperature molten salt electrolyte based on LiBETI and acetamide, Solid State Ionics 175(2004) 277-280.

    17. [17]

      [17] E.R. Cooper, C.D. Andrews, P.S. Wheatly, et al., Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues, Nature 430(2004) 1012-1016.

    18. [18]

      [18] M. Francisco, A. van den Bruinhorst, M.C. Kroon, Low-Temperature-Temperature Mixtures (LTTMs):a new generation of designer solvents, Angew. Chem. Int. Ed. 52(2013) 3074-3085.

    19. [19]

      [19] A.P. Abbott, M. Azam, K.S. Ryder, S. Saleem, In situ electrochemical digital holographic microscopy; a study of metal electrodeposition in deep eutectic solvents, Anal. Chem. 85(2013) 6653-6660.

    20. [20]

      [20] A.P. Abbott, K. El Ttaib, G. Frisch, K.J. McKenzie, K.S. Ryder, Electrodeposition of copper composites from deep eutectic solvents based on choline chloride, Phys. Chem. Chem. Phys. 11(2009) 4269-4277.

    21. [21]

      [21] C.D. Gu, J.L. Zhang, W.Q. Bai, et al., Electro-brush plating from deep eutectic solvent:a case of nanocrystalline Ni coatings with superior mechanical property and corrosion resistance, J. Electrochem. Soc. 162(2015) D159-D165.

    22. [22]

      [22] G.F. Cai, J.P. Tu, C.D. Gu, et al., One-step fabrication of nanostructured NiO films from deep eutectic solvent with enhanced electrochromic performance, J. Mater. Chem. A 1(2013) 4286-4292.

    23. [23]

      [23] C.D. Gu, J.P. Tu, One-step fabrication of nanostructured Ni film with lotus effect from deep eutectic solvent, Langmuir 27(2011) 10132-10140.

    24. [24]

      [24] Y.T. Dai, J. van Spronsen, G.J. Witkamp, R. Verpoorte, Y.H. Choi, Natural deep eutectic solvents as new potential media for green technology, Anal. Chim. Acta 766(2013) 61-68.

    25. [25]

      [25] J.C. Barron, The Electrochemistry of Zn in Deep Eutectic Solvents,Ph.D thesis, University of Leicester, 2009.

    26. [26]

      [26] A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Ionic liquids and their use as solvent, US Patent, 7183433 B2,2007.

    27. [27]

      [27] W.J. Guo, Y.C. Hou, S.H. Ren, S.D. Tian, W.Z. Wu, Formation of deep eutectic solvents by phenols and choline chloride and their physical properties, J. Chem. Eng. Data 58(2013) 866-872.

    28. [28]

      [28] M. Avalos, R. Babiano, P. Cintas, J.L. Jiménez, J.C. Palacios, Greener media in chemical synthesis and processing, Angew. Chem. Int. Ed. 45(2006) 3904-3908.

    29. [29]

      [29] Q.H. Zhang, K. De Oliveira Vigier, S. Royer, F. Jérôme, Deep eutectic solvents:syntheses, properties and applications, Chem. Soc. Rev. 41(2012) 7108-7146.

    30. [30]

      [30] H.Y. Wang, Y. Jing, X.H. Wang, Y. Yao, Y.Z. Jia, Structure and physico-chemical properties of three analogous ionic liquids containing magnesium chloride, J. Mol. Liq. 170(2012) 20-24.

    31. [31]

      [31] W.Y. Guo, X.M. Zhang, Metal-ion interactions with sugars. The crystal structure and FTIR study of an SrCl2-fructose complex, Carbohydr. Res. 339(2004) 1421-1426.

    32. [32]

      [32] K. Dill, S. Bromberg, Molecular Driving Forces:Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience, Garland Science, San Diego, 2010, pp. 616-617.

    33. [33]

      [33] G. Aullón, D. Bellamy, A.G. Orpen, L. Brammer, E.A. Bruton, Metal-bound chlorine often accepts hydrogen bonds, Chem. Commun. 6(1998) 653-654.

    34. [34]

      [34] H. Zhao, G.A. Baker, S. Holmes, New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel, Org. Biomol. Chem. 9(2011) 1908-1916.

    35. [35]

      [35] R. Mrozek, Z. Rzaçzyńska, M. Sikorska-Iwan, Thermal analysis of manganese (II) complexes with glycine, J. Therm. Anal. Calorim. 63(2001) 839-846.

    36. [36]

      [36] A.A. Shamsuri, D.K. Abdullah, Ionic liquids:preparations and limitations, Makara Sains 14(2010) 101-106.

    37. [37]

      [37] J.I. García, H. García-Martín, E. Pires, Glycerol based solvents:synthesis, properties and applications, Green Chem. 16(2014) 1007-1033.

  • 加载中
    1. [1]

      Bing XieQi JiangFang ZhuYaoyao LaiYueming ZhaoWei HePei Yang . Transdermal delivery of amphotericin B using deep eutectic solvents for antifungal therapy. Chinese Chemical Letters, 2025, 36(5): 110508-. doi: 10.1016/j.cclet.2024.110508

    2. [2]

      Yunlong SunWei DingYanhao WangZhening ZhangRuyun WangYinghui GuoZhiyuan GaoHaiyan DuDong Ma . New insight into manganese-enhanced abiotic degradation of microplastics: Processes and mechanisms. Chinese Chemical Letters, 2025, 36(3): 109941-. doi: 10.1016/j.cclet.2024.109941

    3. [3]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    4. [4]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    5. [5]

      Chengkai LiGuoqiang FanGang ZhengRong GaoLi Liu . Groups 3 and 4 single-site catalysts for olefin-polar monomer copolymerization. Chinese Chemical Letters, 2025, 36(9): 111297-. doi: 10.1016/j.cclet.2025.111297

    6. [6]

      Aonan WangJingwen DaiYiming GuoFanghua NingXiaoyu LiuSidra SubhanJiaqian QinShigang LuJin Yi . Imidazolium bromide based dual-functional redox mediator for the construction of dendrite-free Li-CO2 batteries. Chinese Chemical Letters, 2025, 36(7): 110186-. doi: 10.1016/j.cclet.2024.110186

    7. [7]

      Xia-Lin DaiYu-Hang YaoJian-Feng ZhenWei GaoJia-Mei ChenTong-Bu Lu . Reaction crystallization method based on deep eutectic solvents: A novel, green and efficient cocrystal synthesis approach. Chinese Chemical Letters, 2025, 36(11): 110413-. doi: 10.1016/j.cclet.2024.110413

    8. [8]

      Yuan YanLingqi ShenYu WangBincheng GongZuguang LiHongdeng Qiu . Development of switchable deep eutectic solvents: Applications in extraction of natural products. Chinese Chemical Letters, 2025, 36(11): 110845-. doi: 10.1016/j.cclet.2025.110845

    9. [9]

      Mengyu ChenQinglin ZhouTianyun QinNingyao SunYuxi ChenYuwei GongXingyi LiJinsong Liu . An ionic liquid-reinforced gelatin hydrogel with strong adhesion, antibacterial and anti-inflammatory properties for treating oral ulcers. Chinese Chemical Letters, 2025, 36(7): 110441-. doi: 10.1016/j.cclet.2024.110441

    10. [10]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    11. [11]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    12. [12]

      Jiahao LiuPeng LiuJunhong DuanQiongxuan XieJie FengHongpei TanZe MiYing LiYunjie LiaoPengfei RongWenhu ZhouXiang Gao . Macrophages-mediated tumor accumulation and deep penetration of bismuth/manganese biomineralized nanoparticles for enhanced radiotherapy. Chinese Chemical Letters, 2024, 35(12): 109632-. doi: 10.1016/j.cclet.2024.109632

    13. [13]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    14. [14]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    15. [15]

      Yuhao ZhouSiyuan WuXiaozhe RenHongjin LiShu LiTianying Yan . Effects of salt fraction on the Na+ transport in salt-in-ionic liquid electrolytes. Chinese Chemical Letters, 2025, 36(6): 110048-. doi: 10.1016/j.cclet.2024.110048

    16. [16]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    17. [17]

      Xinyuan LiZhuozhu LiWenzhong HuangJiantao LiWei ZhangShihao FengHao FanZhuo ChenSungsik LeeCongcong CaiLiang Zhou . Solvent-free synthesis of Co single atom and nanocluster decorated N-doped carbon for efficient oxygen reduction. Chinese Chemical Letters, 2025, 36(9): 110716-. doi: 10.1016/j.cclet.2024.110716

    18. [18]

      Xiangrong PanXixi HouYuhang DuZhixin PangShiyang HeLan WangJianxue YangLongfei MaoJianhua QinHaixia WuBaozhong LiuZhan ZhouLufang MaChaoliang Tan . Solvent-mediated synthesis of 2D In-TCPP MOF nanosheets for enhanced photodynamic antibacterial therapy. Chinese Chemical Letters, 2025, 36(12): 110536-. doi: 10.1016/j.cclet.2024.110536

    19. [19]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    20. [20]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

Metrics
  • PDF Downloads(0)
  • Abstract views(1157)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return