Citation: Yan-Zuo Chen, Yu-Kun Huang, Yuan Chen, Ya-Jing Ye, Kai-Yan Lou, Feng Gao. Novel nanoparticles composed of chitosan and β-cyclodextrin derivatives as potential insoluble drug carrier[J]. Chinese Chemical Letters, ;2015, 26(7): 909-913. doi: 10.1016/j.cclet.2015.05.044
-
This research was aim to develop novel cyclodextrin/chitosan (CD/CS) nanocarriers for insoluble drug delivery through themild ionic gelation method previously developed by our lab. A series of different bcyclodextrin (β-CD) derivatives were incorporated into CS nanoparticles including hydroxypropyl-bcyclodextrin (HP-β-CD), sulphobutylether-β-cyclodextrin (SB-β-CD), and 2,6-di-O-methy-β-cyclodextrin (DM-β-CD). Various process parameters for nanoparticle preparation and their effects on physicochemical properties of CD/CS nanoparticles were investigated, such as the type of CD derivatives, CD and CS concentrations, the mass ratio of CS to TPP (CS/TPP), and pH values. In the optimal condition, CD/CS nanoparticles were obtained in the size range of 215-276 nm and with the zeta potential from 30.22 mV to 35.79 mV. Moreover, the stability study showed that the incorporation of CD rendered the CD/CS nanocarriers more stable than CS nanoparticles in PBS buffer at pH 6.8. For their easy preparation and adjustable parameters in nanoparticle formation as well as the diversified hydrophobic core of CD derivatives, the novel CD/CS nanoparticles developed herein might represent an interesting and versatile drug delivery platform for a variety of poorly water-soluble drugs with different physicochemical properties.
-
-
[1]
[1] L. Zhang, F.X. Gu, J.M. Chan, et al., Nanoparticles in medicine: therapeutic applications and developments, Clin. Pharmacol. Ther. 83 (2008) 761–769.
-
[2]
[2] D. Brambilla, B. Le Droumaguet, J. Nicolas, et al., Nanotechnologies for Alzheimer's disease: diagnosis, therapy, and safety issues, Nanomedicine 7 (2011) 521–540.
-
[3]
[3] A.O. Elzoghby, W.M. Samy, N.A. Elgindy, Albumin-based nanoparticles as potential controlled release drug delivery systems, J. Control. Release 157 (2012) 168–182.
-
[4]
[4] R. Singh, J.W. Lillard Jr., Nanoparticle-based targeted drug delivery, Exp. Mol. Pathol. 86 (2009) 215–223.
-
[5]
[5] M. Ferrari, Cancer nanotechnology: opportunities and challenges, Nat. Rev. Cancer 5 (2005) 161–171.
-
[6]
[6] S. Naahidi, M. Jafari, F. Edalat, K. Raymond, A. Khademhosseini, Biocompatibility of engineered nanoparticles for drug delivery, J. Control. Release 166 (2013) 182–194.
-
[7]
[7] J.D. Byrne, T. Betancourt, L. Brannon-Peppas, Active targeting schemes for nanoparticle systems in cancer therapeutics, Adv. Drug Del. Rev. 60 (2008) 1615–1626.
-
[8]
[8] S.A. Agnihotri, N.N. Mallikarjuna, T.M. Aminabhavi, Recent advances on chitosanbasedmicro- andnanoparticles in drug delivery, J. Control. Release 100 (2004) 5–28.
-
[9]
[9] S.R. Jameela, P.G. Latha, A. Subramoniam, A. Jayakrishnan, Antitumour activity of mitoxantrone-loaded chitosan microspheres against Ehrlich ascites carcinoma, J. Pharm. Pharmacol. 48 (1996) 685–688.
-
[10]
[10] S. Mitra, U. Gaur, P.C. Ghosh, A.N. Maitra, Tumour targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier, J. Control. Release 74 (2001) 317–323.
-
[11]
[11] P. Yousefpour, F. Atyabi, E. Vasheghani-Farahani, A.A. Movahedi, R. Dinarvand, Targeted delivery of doxorubicin-utilizing chitosan nanoparticles surfacefunctionalized with anti-Her2 trastuzumab, Int. J. Nanomed. 6 (2011) 1977–1990.
-
[12]
[12] Z.T. Yuan, Y.J. Ye, F. Gao, et al., Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release, Int. J. Pharm. 446 (2013) 191–198.
-
[13]
[13] S.S. Gao, J. Sun, D.J. Fu, et al., Preparation, characterization and pharmacokinetic studies of tacrolimus-dimethyl-β-cyclodextrin inclusion complex-loaded albumin nanoparticles, Int. J. Pharm. 427 (2012) 410–416.
-
[14]
[14] Y.J. Ye, Y. Sun, H.L. Zhao, et al., A novel lactoferrin-modified β-cyclodextrinnanocarrier for brain-targeting drug delivery, Int. J. Pharm. 458 (2013) 110–117.
-
[15]
[15] C. Yang, Recent progress in supramolecular chiral photochemistry, Chin. Chem. Lett. 24 (2013) 437–441.
-
[16]
[16] H. Hamada, K. Ishihara, N. Masuoka, K. Mikuni, N. Nakajima, Enhancement of water-solubility and bioactivity of paclitaxel using modified cyclodextrins, J. Biosci. Bioeng. 102 (2006) 369–371.
-
[17]
[17] A. García, D. Leonardi, M.O. Salazar, M.C. Lamas, Modified β-cyclodextrin inclusion complex to improve the physicochemical properties of albendazole. Complete in vitro evaluation and characterization, PLOS ONE 9 (2014) e88234.
-
[18]
[18] C.A. Ventura, S. Tommasini, A. Falcone, et al., Influence of modified cyclodextrins on solubility and percutaneous absorption of celecoxib through human skin, Int. J. Pharm. 314 (2006) 37–45.
-
[19]
[19] J.G. Ji, S.L. Hao, W.Q. Liu, et al., Preparation and evaluation of O-carboxymethylchitosan/cyclodextrin nanoparticles as hydrophobic drug delivery carriers, Polym. Bull. 67 (2011) 1201–1213.
-
[20]
[20] A. Vyas, S. Saraf, S. Saraf, Encapsulation of cyclodextrincomplexed simvastatin in chitosan nanocarriers: a novel technique for oral delivery, J. Incl. Phenom. Macrocycl. Chem. 66 (2010) 251–259.
-
[21]
[21] A.A. Mahmoud, G.S. El-Feky, R. Kamel, G.E.A. Awad, Chitosan/sulfobutyletherb- cyclodextrin nanoparticles as a potential approach for ocular drug delivery, Int. J. Pharm. 413 (2011) 229–236.
-
[22]
[22] Y. Yang, Y.M. Zhang, Y. Chen, J.T. Chen, Y. Liu, Targeted polysaccharide nanoparticle for adamplatin prodrug delivery, J. Med. Chem. 56 (2013) 9725–9736.
-
[23]
[23] D. Zhao, Y. Chen, Y. Liu, Comparative studies on molecular induced aggregation of hepta-imidazoliumyl-β-cyclodextrin towards anionic surfactants, Chin. Chem. Lett. (2014), http://dx.doi.org/10.1016/j.cclet.2014.11.028.
-
[24]
[24] M.L. Tsai, R.H. Chen, S.W. Bai, W.Y. Chen, The storage stability of chitosan/tripolyphosphate nanoparticles in a phosphate buffer, Carbohydr. Polym. 84 (2011) 756–761.
-
[1]
-
-
[1]
Jinjie Lu , Qikai Liu , Yuting Zhang , Yi Zhou , Yanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406
-
[2]
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
-
[3]
Yujie Li , Ya-Nan Wang , Yin-Gen Luo , Hongcai Yang , Jinrui Ren , Xiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576
-
[4]
Qiang Li , Jiangbo Fan , Hongkai Mu , Lin Chen , Yongzhen Yang , Shiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947
-
[5]
Shuheng Zhang , Yuanyuan Zhang , Wanyu Wang , Yuzhu Hu , Xinchuan Chen , Bilan Wang , Xiang Gao . A combination strategy of DOX and VEGFR-2 targeted inhibitor based on nanomicelle for enhancing lymphoma therapy. Chinese Chemical Letters, 2024, 35(12): 109658-. doi: 10.1016/j.cclet.2024.109658
-
[6]
Yanfei Liu , Yaqin Hu , Yifu Tan , Qiwen Chen , Zhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289
-
[7]
Dong-Bing Cheng , Junxin Duan , Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053
-
[8]
Zhilong Xie , Guohui Zhang , Ya Meng , Yefei Tong , Jian Deng , Honghui Li , Qingqing Ma , Shisong Han , Wenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584
-
[9]
Wenjia Wang , Xingyue He , Xiaojie Wang , Tiantian Zhao , Osamu Muraoka , Genzoh Tanabe , Weijia Xie , Tianjiao Zhou , Lei Xing , Qingri Jin , Hulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656
-
[10]
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
-
[11]
Fengjie Liu , Fansu Meng , Zhenjiang Yang , Huan Wang , Yuehong Ren , Yu Cai , Xingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335
-
[12]
Liping Zhao , Xixi Guo , Zhimeng Zhang , Xi Lu , Qingxuan Zeng , Tianyun Fan , Xintong Zhang , Fenbei Chen , Mengyi Xu , Min Yuan , Zhenjun Li , Jiandong Jiang , Jing Pang , Xuefu You , Yanxiang Wang , Danqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506
-
[13]
Jiajia Wang , XinXin Ge , Yajing Xiang , Xiaoliang Qi , Ying Li , Hangbin Xu , Erya Cai , Chaofan Zhang , Yulong Lan , Xiaojing Chen , Yizuo Shi , Zhangping Li , Jianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819
-
[14]
Ningyue Xu , Jun Wang , Lei Liu , Changyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225
-
[15]
Luyu Zhang , Zirong Dong , Shuai Yu , Guangyue Li , Weiwen Kong , Wenjuan Liu , Haisheng He , Yi Lu , Wei Wu , Jianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101
-
[16]
Yi Cao , Xiaojiao Ge , Yuanyuan Wei , Lulu He , Aiguo Wu , Juan Li . Tumor microenvironment-activatable neuropeptide-drug conjugates enhanced tumor penetration and inhibition via multiple delivery pathways and calcium deposition. Chinese Chemical Letters, 2024, 35(4): 108672-. doi: 10.1016/j.cclet.2023.108672
-
[17]
Jiechen Liu , Xiaoguang Li , Ruiyang Xia , Yuqi Wang , Fenghe Zhang , Yongzhi Pang , Qing Li . Efficient suppression of oral squamous cell carcinoma through spatial dimension conversion drug delivery systems-enabled immunomodulatory-photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109619-. doi: 10.1016/j.cclet.2024.109619
-
[18]
Linjie Ju , Zhongxi Huang , Qian Shen , Chan Fu , Shuanghe Li , Wenjie Duan , Chenfeng Xu , Weizhen An , Zhiqiang Zhai , Jifu Wei , Changmin Yu , Guoren Zhou . Glutathione depletion based Pt(Ⅳ) hybrid mesoporous organosilica delivery system to conquer cisplatin chemoresistance: A “one stone three birds” strategy. Chinese Chemical Letters, 2024, 35(10): 109450-. doi: 10.1016/j.cclet.2023.109450
-
[19]
Ping Sun , Yuanqin Huang , Shunhong Chen , Xining Ma , Zhaokai Yang , Jian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005
-
[20]
Siwei Wang , Wei-Lei Zhou , Yong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(567)
- HTML views(2)