Citation: En-Dong Xing, Long-Qi Liang, Yu-Jie Dong, Wei-Min Huang. An oxygen reduction sensor based on a novel type of porous carbon composite membrane electrode[J]. Chinese Chemical Letters, ;2015, 26(10): 1322-1326. doi: 10.1016/j.cclet.2015.05.043 shu

An oxygen reduction sensor based on a novel type of porous carbon composite membrane electrode

  • Corresponding author: Wei-Min Huang, 
  • Received Date: 13 February 2015
    Available Online: 7 May 2015

    Fund Project: We acknowledge financial supports from the National Natural Science Foundation of China (No. 21273097) (No. 21273097) the project from the State Key Laboratory of Electroanalytical Chemistry (No. 2013) (No. 2013)the Science Foundation of Jilin Province (No. 20130204003GX). (No. 20130204003GX)

  • The development of a simple, efficient and sensitive sensor for dissolved oxygen is proposed using a novel type of porous carbon composite membrane/glassy carbon electrode based on the low-cost common filter paper by a simple method. The resulting device exhibited excellent electrocatalytic activities toward the oxygen reduction reaction. Scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and electrochemical measurements demonstrated that the porous morphology and uniformly dispersed Fe3C nanoparticles of the PCCM play an important role in the oxygen reduction reaction. A linear response range from 2μmol/L up to 110 μmol/L and a detection limit of 1.4 μmol/L was obtained with this sensor. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation, was 3.0%. The successful fabrication of PCCM/GC electrode may promote the development of new porous carbon oxygen reduction reaction material for the oxygen reduction sensor.
  • 加载中
    1. [1]

      [1] W. Glasspool, J. Atkinson, A screen-printed amperometric dissolved oxygen sensor utilising an immobilised electrolyte gel and membrane, Sens. Actuators B:Chem. 48(1998) 308-317.

    2. [2]

      [2] R. Martínez-Máñez, J. Soto, J. Lizondo-Sabater, et al., New potentiomentric dissolved oxygen sensors in thick film technology, Sens. Actuators B:Chem. 101(2004) 295-301.

    3. [3]

      [3] S. Shanmugam, T. Osaka, Efficient electrocatalytic oxygen reduction over metal free-nitrogen doped carbon nanocapsules, Chem. Commun. 47(2011) 4463-4465.

    4. [4]

      [4] A. Morozan, P. Jégou, S. Campidelli, S. Palacin, B. Jousselme, Relationship between polypyrrole morphology and electrochemical activity towards oxygen reduction reaction, Chem. Commun. 48(2012) 4627-4629.

    5. [5]

      [5] Y. Hu, J.O. Jensen, W. Zhang, et al., Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts, Angew. Chem. Int. Ed. 53(2014) 3675-3679.

    6. [6]

      [6] Y.F. Zhang, X.J. Bo, C. Luhana, et al., Facile synthesis of a Cu-based MOF confined in macroporous carbon hybrid material with enhanced electrocatalytic ability, Chem. Commun. 49(2013) 6885-6887.

    7. [7]

      [7] Y.M. Tan, C.F. Xu, G.X. Chen, et al., Facile synthesis of manganese-oxide-containing mesoporous nitrogen-doped carbon for efficient oxygen reduction, Adv. Funct. Mater. 22(2012) 4584-4591.

    8. [8]

      [8] Z.Y. Zhang, G.M. Veith, G.M. Brown, et al., Ionic liquid derived carbons as highly efficient oxygen reduction catalysts:first elucidation of pore size distribution dependent kinetics, Chem. Commun. 50(2014) 1469-1471.

    9. [9]

      [9] J.T. Jin, F.P. Pan, L.H. Jiang, et al., Catalyst-free synthesis of crumpled boron and nitrogen Co-doped graphite layers with tunable bond structure for oxygen reduction reaction, ACS Nano 8(2014) 3313-3321.

    10. [10]

      [10] S.K. Ramasahayam, U.B. Nasini, V. Bairi, A.U. Shaikh, T. Viswanathan, Microwave assisted synthesis and characterization of silicon and phosphorous Co-doped carbon as an electrocatalyst for oxygen reduction reaction, RSC Adv. 4(2014) 6306-6313.

    11. [11]

      [11] L.T. Qu, Y. Liu, J.-B. Baek, L.M. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano 4(2010) 1321-1326.

    12. [12]

      [12] S.M. Zhang, H.Y. Zhang, Q. Liu, S.L. Chen, Fe-N doped carbon nanotube/graphene composite:facile synthesis and superior electrocatalytic activity, J. Mater. Chem. A 1(2013) 3302-3308.

    13. [13]

      [13] K.I. Ozoemena, S.A. Mamuru, T. Fukuda, N. Kobayashi, T. Nyokong, Metal (Co, Fe) tribenzotetraazachlorin-fullerene conjugates:impact of direct π-bonding on the redox behaviour and oxygen reduction reaction, Electrochem. Commun. 11(2009) 1221-1225.

    14. [14]

      [14] Y. Wang, Y.Y. Shao, D.W. Matson, J.H. Li, Y.H. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano 4(2010) 1790-1798.

    15. [15]

      [15] W. Ding, Z.D. Wei, S.G. Chen, et al., Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction, Angew. Chem. Int. Ed. 52(2013) 11755-11759.

    16. [16]

      [16] X.J. Bo, L.P. Guo, Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution, Phys. Chem. Chem. Phys. 15(2013) 2459-2465.

    17. [17]

      [17] J.J. Duan, Y. Zheng, S. Chen, et al., Mesoporous hybrid material composed of Mn3O4 nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction, Chem. Commun. 49(2013) 7705-7707.

    18. [18]

      [18] G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt, Science 332(2011) 443-447.

    19. [19]

      [19] H. Zhu, J. Yin, X.L. Wang, H.Y. Wang, X.R. Yang, Microorganism-derived heteroatom-doped carbon materials for oxygen reduction and supercapacitors, Adv. Funct. Mater. 23(2013) 1305-1312.

    20. [20]

      [20] R.J. White, V. Budarin, R. Luque, J.H. Clark, D.J. Macquarrie, Tuneable porous carbonaceous materials from renewable resources, Chem. Soc. Rev. 38(2009) 3401-3418.

    21. [21]

      [21] L. Wang, Q.Y. Zhang, S.L. Chen, et al., Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials, Anal. Chem. 86(2014) 1414-1421.

    22. [22]

      [22] Y.L. Zhai, C.Z. Zhu, E.K. Wang, S.J. Dong, Energetic carbon-based hybrids:green and facile synthesis from soy milk and extraordinary electrocatalytic activity towards ORR, Nanoscale 6(2014) 2964-2970.

    23. [23]

      [23] C.Z. Zhu, J.F. Zhai, S.J. Dong, Bifunctional fluorescent carbon nanodots:green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction, Chem. Commun. 48(2012) 9367-9369.

    24. [24]

      [24] W.X. Yang, Y.L. Zhai, X.Y. Yue, Y.Z. Wang, J.B. Jia, From filter paper to porous carbon composite membrane oxygen reduction catalyst, Chem. Commun. 50(2014) 11151-11153.

    25. [25]

      [25] H.S. Zhai, L. Cao, X.H. Xia, Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction, Chin. Chem. Lett. 24(2013) 103-106.

    26. [26]

      [26] W.X. Yang, X.J. Liu, X.Y. Yue, J.B. Jia, S.J. Guo, Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction, J. Am. Chem. Soc. 137(2015) 1436-1439.

    27. [27]

      [27] M. Sobiesiak, Nanoporous carbons obtained by carbonization of copolymers impregnated by salts, Adsorption 19(2013) 349-356.

    28. [28]

      [28] J. Su, Y.H. Gao, R.C. Che, Synthesis and microstructure of Fe3C encapsulated inside chain-like carbon nanocapsules, Mater. Lett. 64(2010) 680-683.

    29. [29]

      [29] J. Fournier, G. Lalande, R. Coté, D. Guay, J.P. Dodelet, Activation of various Febased precursors on carbon black and graphite supports to obtain catalysts for the reduction of oxygen in fuel cells, J. Electrochem. Soc. 144(1997) 218-226.

    30. [30]

      [30] M. Bron, P. Bogdanoff, S. Fiechter, et al., Influence of selenium on the catalytic properties of ruthenium-based cluster catalysts for oxygen reduction, J. Electroanal. Chem. 500(2001) 510-517.

  • 加载中
    1. [1]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    2. [2]

      Chaojian XuJuxin YinSihong WangYue PanQianhe ZhangNingkang XieShuo YangShaowu Lv . Aerobic radical polymerization of hydrogels triggered by acetylacetone-transition metal self-initiation. Chinese Chemical Letters, 2025, 36(7): 111075-. doi: 10.1016/j.cclet.2025.111075

    3. [3]

      Jiayu LiBinli WangYu LuoHongyu WangLei Zhang . The double-sided roles of difluorooxalatoborate contained electrolyte salts in electrochemical energy storage devices: A review. Chinese Chemical Letters, 2025, 36(8): 110220-. doi: 10.1016/j.cclet.2024.110220

    4. [4]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    5. [5]

      Guangying WangQinglong QiaoWenhao JiaYiyan RuanKai AnWenchao JiangXuelian ZhouZhaochao Xu . Adaptive emission profile of transformable fluorescent probes as fingerprints: A typical application in distinguishing different surfactants. Chinese Chemical Letters, 2025, 36(5): 110130-. doi: 10.1016/j.cclet.2024.110130

    6. [6]

      Haoquan HuangHaiting ChenXinran DongYanbin XuAnlian HuangQiaoyi CenHuairou ZhuGuosheng ChenWei YiSiming HuangGangfeng Ouyang . Site-specific surface amination strategy facilitates biomimetic encapsulation of enzymes within hydrogen-bonded organic framework. Chinese Chemical Letters, 2025, 36(9): 111223-. doi: 10.1016/j.cclet.2025.111223

    7. [7]

      Tianle CaoNi YanYawen LiXinyi ZhangYue ZhuNaiyao LiZengrong WangGang He . D-A-D-A-D conjugated pyrenoviologens for electrochromism, electrofluorochromism, and detection of picric acid. Chinese Chemical Letters, 2025, 36(10): 111021-. doi: 10.1016/j.cclet.2025.111021

    8. [8]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

    9. [9]

      Xiaoke XiXinpeng LiYang LiuYucheng ZhangLinmei LiJianming LiXu JinShuhong JiaoZhanwu LeiRuiguo Cao . Monolithic medium-entropy alloy electrode enables efficient and stable oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(12): 110535-. doi: 10.1016/j.cclet.2024.110535

    10. [10]

      Qiang-Qiang JiaJia-Qi LuoZhi-Yu XueJing-Song TangWen-Qiang QiuChang-Feng WangZhi-Xu ZhangHai-Feng LuYi ZhangDa-Wei Fu . Enhanced output power density of PVDF/LM composite for piezoelectric sensor. Chinese Chemical Letters, 2025, 36(11): 110471-. doi: 10.1016/j.cclet.2024.110471

    11. [11]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-0. doi: 10.3866/PKU.WHXB202309047

    12. [12]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    13. [13]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    14. [14]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    15. [15]

      Fangbing WangQiankun ZengJing RenMin ZhangGuoyue Shi . A membrane-based plasma separator coupled with ratiometric fluorescent sensor for biochemical analysis in whole blood. Chinese Chemical Letters, 2025, 36(7): 110494-. doi: 10.1016/j.cclet.2024.110494

    16. [16]

      Lili ZhangHui GaoGong ZhangYuning DongKai HuangZifan PangTuo WangChunlei PeiPeng ZhangJinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204

    17. [17]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    18. [18]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    19. [19]

      Jiawei GeXian WangHeyuan TianHao WanWei MaJiangying QuJunjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906

    20. [20]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

Metrics
  • PDF Downloads(0)
  • Abstract views(1140)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return