Citation: Jia-Bao Long, Ying-Xin Liu, Qing-Feng Cao, Qiu-Ping Guo, Shu-Ya Yan, Xiang-Xian Meng. Sensitive and enzyme-free detection for single nucleotide polymorphism using microbead-assisted toehold-mediated strand displacement reaction[J]. Chinese Chemical Letters, ;2015, 26(8): 1031-1035. doi: 10.1016/j.cclet.2015.05.036 shu

Sensitive and enzyme-free detection for single nucleotide polymorphism using microbead-assisted toehold-mediated strand displacement reaction

  • Corresponding author: Xiang-Xian Meng, 
  • Received Date: 3 December 2014
    Available Online: 7 April 2015

    Fund Project: This work is supported by National Natural Science Foundation of China (No. 21275043) (No. 21275043)National Basic Research Program of China under Grants (No. 2009CB421601). (No. 2009CB421601)

  • This report described a free-enzyme, convenient and inexpensive genotyping biosensor capable of detecting single nucleotide polymorphism at normal temperature based on the combination of toeholdmediated strand displacement reaction (toehold-SDR) and microbead-capture technique. The biosensor consists of a pre-hybridized strand formed by a reporter probe and a capture probe. In the presence of a mutant sequence, there is no toehold-mediated strand displacement and the reporter probe cannot be released from the pre-hybridized strand. Microbeads capture the fluorescent pre-hybridized strand through biotin-streptavidin interaction, so microbeads give out significant fluorescence signal, while there is no fluorescence in the solution. However, in the presence of a matched target, the strand displacement is effectively initiated and the reporter probe is released from pre-hybridized strand. After addingmicrobeads, the solution produces bright fluorescence, while microbeads have no obvious signal. Genotypes are identified conveniently according to the fluorescence intensity of the solution. The method provides a simple and inexpensive strategy to detect point mutation. Moreover, this biosensor shows the linear relationship in the range of 1-40 nmol/L and reaches a detection limit of 0.3 nmol/L.
  • 加载中
    1. [1]

      [1] L. Kruglyak, D.A. Nickerson, Variation is the spice of life, Nat. Genet. 27 (2001) 234-236.

    2. [2]

      [2] D.J. Eastburn, A. Sciambi, A.R. Abate, Picoinjection enables digital detection of RNA with droplet RT-PCR, PLoS One 8 (2013) e62961.

    3. [3]

      [3] A. Klindworth, E. Pruesse, T. Schweer, et al., Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies, Nucleic Acids Res. 41 (2013) e1.

    4. [4]

      [4] H.L. Cheng, S.S. Chiou, Y.M. Liao, Y.L. Chen, S.M. Wu, Genotyping of single nucleotide polymorphism in γ-glutamyl hydrolase gene by capillary electrophoresis, Electrophoresis 32 (2011) 2021-2027.

    5. [5]

      [5] T. Murakami, J. Sumaoka, M. Komiyama, Sensitive isothermal detection of nucleicacid sequence by primer generation-rolling circle amplification, Nucleic Acids Res. 37 (2009) e19.

    6. [6]

      [6] Y.T. Zhou, Q. Huang, J.M. Gao, et al., A dumbbell probe-mediated rolling circle amplification strategy for highly sensitive microRNA detection, Nucleic Acids Res. 38 (2010) e156.

    7. [7]

      [7] F. Xuan, X.T. Luo, I.M. Hsing, Sensitive immobilization-free electrochemical DNA sensor based on isothermal circular strand displacement polymerization reaction, Biosens. Bioelectron. 35 (2012) 230-234.

    8. [8]

      [8] H.Y. Su, X.C. Meng, Q.P. Guo, et al., Label-free DNA sensor with PCR-like sensitivity based on background reduction and target-triggered polymerization amplification, Biosens. Bioelectron. 52 (2014) 417-421.

    9. [9]

      [9] L.I. Ward, S.J. Harper, Loop-mediated isothermal amplification for the detection of plant pathogens, Methods Mol. Biol. 862 (2012) 161-170.

    10. [10]

      [10] A. Valoczi, C. Hornyik, N. Varga, et al., Sensitive and specific detection of micro-RNAs by northern blot analysis using LNA-modified oligonucleotide probes, Nucleic Acids Res. 32 (2004) e175.

    11. [11]

      [11] D.J. Caruana, A. Heller, Enzyme-amplified amperometric detection of hybridization and of a single base pair mutation in an 18-base oligonucleotide on a 7-mmdiameter microelectrode, J. Am. Chem. Soc. 121 (1999) 769-774.

    12. [12]

      [12] K. Knez, D. Spasic, K.P.F. Janssen, J. Lammertyn, Emerging technologies for hybridization based single nucleotide polymorphism detection, Analyst 139 (2014) 353-370.

    13. [13]

      [13] Y. Xiao, B.D. Piorek, K.W. Plaxco, A.J. Heeger, A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement, J. Am. Chem. Soc. 127 (2005) 17990-17991.

    14. [14]

      [14] A.J. Genot, D.Y. Zhang, J. Bath, A.J. Turberfield, Remote toehold: amechanism for flexible control of DNA hybridization kinetics, J. Am. Chem. Soc. 133 (2011) 2177-2182.

    15. [15]

      [15] B. Yurke, A.P. Mills Jr., Using DNA to power nanostructures, Genet. Program Evolv. Mach. 4 (2003) 111-122.

    16. [16]

      [16] Z. Zhang, D.D. Zeng, H.W. Ma, et al., A DNA-origami chip platform for label-free SNP genotyping using toehold-mediated strand displacement, Small 6 (2010) 1854-1858.

    17. [17]

      [17] X.Y. Wang, M.J. Zou, H.D. Huang, et al., Gold nanoparticle enhanced fluorescence anisotropy for the assay of single nucleotide polymorphisms (SNPs) based on toehold-mediated strand-displacement reaction, Biosens. Bioelectron. 41 (2013) 569-575.

    18. [18]

      [18] D.Z. Wang, W. Tang, X.J. Wu, et al., Highly selective detection of singlenucleotide polymorphisms using a quartz crystal microbalance biosensor based on the toehold-mediated strand displacement reaction, Anal. Chem. 84 (2012) 7008-7014.

    19. [19]

      [19] X.X. Meng, X.H. Yang, K.M. Wang, et al., Direct fluorescence detection of point mutations in human genomic DNA using microbead-based ligase chain reaction, Talanta 80 (2010) 1725-1729.

    20. [20]

      [20] L.J. Zhou, K.M. Wang, W.H. Tan, et al., Quantitative intracellular molecular profiling using a one-dimensional flow system, Anal. Chem. 78 (2006) 6246-6251.

  • 加载中
    1. [1]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    2. [2]

      Kuangdi LuoYang QinXuehao ZhangHanxu JiHeao ZhangJiangtian LiXianjin XiaoXinyu Wang . Regulable toehold lock for the effective control of strand displacement reaction sequence and circuit leakage. Chinese Chemical Letters, 2024, 35(7): 109104-. doi: 10.1016/j.cclet.2023.109104

    3. [3]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    4. [4]

      Zhaorui SongQiulian HaoBing LiYuwei YuanShanshan ZhangYongkuan SuoHai-Hao HanZhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834

    5. [5]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    6. [6]

      Chuang LIULichao SUNQingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406

    7. [7]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    8. [8]

      Lilin SongMengru SunYuqing SongFeng ZhangBei ZhaoHairong ZengJinhui ShiHuixin LiuShanshan ZhaoTian TianHeng YinGuangbo Ge . Rationally engineered IR-783 octanoate as an enzyme-activatable fluorogenic tool for functional imaging of hNotum in living systems. Chinese Chemical Letters, 2024, 35(11): 109601-. doi: 10.1016/j.cclet.2024.109601

    9. [9]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    10. [10]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    11. [11]

      Jun XiongKe-Ke ChenNeng-Bin XieWei ChenWen-Xuan ShaoTong-Tong JiSi-Yu YuYu-Qi FengBi-Feng Yuan . Demethylase-assisted site-specific detection of N1-methyladenosine in RNA. Chinese Chemical Letters, 2024, 35(5): 108953-. doi: 10.1016/j.cclet.2023.108953

    12. [12]

      Yunxin LiJinghui ZhangJisen ChenFeng ZhuZhiqiang LiuPeng BaoWei ShenSheng Tang . Detection of SARS-CoV-2 based on artificial intelligence-assisted smartphone: A review. Chinese Chemical Letters, 2024, 35(7): 109220-. doi: 10.1016/j.cclet.2023.109220

    13. [13]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    14. [14]

      Lihua GaoYinglei HanChensheng LinHuikang JiangGuang PengGuangsai YangJindong ChenNing Ye . Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides. Chinese Chemical Letters, 2024, 35(12): 109529-. doi: 10.1016/j.cclet.2024.109529

    15. [15]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    16. [16]

      Yang XuLe MaYang WangChunmeng Shi . Engineering strategies of biomaterial-assisted exosomes for skin wound repair: Latest advances and challenges. Chinese Chemical Letters, 2025, 36(1): 109766-. doi: 10.1016/j.cclet.2024.109766

    17. [17]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    18. [18]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    19. [19]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    20. [20]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

Metrics
  • PDF Downloads(0)
  • Abstract views(619)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return