Citation: Shou-Bing Yi, Hong-Fei Gao, Quan Li, Ya-Fei Ye, Na Wu, Xiao-Hong Cheng. Synthesis and self-assembly behavior of 2,5-diphenylethynyl thiophene based bolaamphiphiles[J]. Chinese Chemical Letters, ;2015, 26(7): 872-876. doi: 10.1016/j.cclet.2015.05.031 shu

Synthesis and self-assembly behavior of 2,5-diphenylethynyl thiophene based bolaamphiphiles

  • Corresponding author: Xiao-Hong Cheng, 
  • Received Date: 31 March 2015
    Available Online: 13 May 2015

    Fund Project: Scholarship Award for Excellent Doctoral Student of Yunnan Province and Foundation (No. ynuy201418). We thank Dr. Makro Phrem and Prof. Carsten Tschierske from Martin-Luther University Halle- Wittenberg for XRD measurements. (No. 2013FA007)

  • Novel T-shaped bolaamphiphiles consisting of a bent 2,5-diphenylethynyl thiophene rigid core with two terminal glycerol units and a lateral n-alkyl chain have been synthesized via Kumuda and Sonogashira coupling reactions as key steps. Their liquid crystalline behavior was investigated by polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). All such bolaamphiphiles can self-organize into square honeycomb LC phases with p4mm symmetries in the presence of water. UV and PL measurements indicate fluorescent properties making them potential candidates for application in fluorescence sensor devices.
  • 加载中
    1. [1]

      [1] (a) J.M. Lehn, Toward complex matter: supramolecular chemistry and selforganization, Proc. Natl. Acad. Sci. U S A 99 (2002) 4763–4768; (b) S. Förster, T. Plantenberg, From self-organizing polymers to nanohybrid and biomaterials, Angew. Chem. Int. Ed. 41 (2002) 688–714; (c) F.J.M. Hoeben, P. Jonkheijm, E.W. Meijer, et al., About supramolecular assemblies of π-conjugated systems, Chem. Rev. 105 (2005) 1491–1546; (d) J.J.L.M. Cornelissen, A.E. Rowan, R.J.M. Nolte, et al., Chiral architectures from macromolecular building blocks, Chem. Rev. 101 (2001) 4039–4070.

    2. [2]

      [2] (a) A. Ajayaghosh, C. Vijayakumar, R. Varghese, et al., Transcription and amplification of molecular chirality to oppositely biased supramolecular π helices, Angew. Chem. Int. Ed. 45 (2006) 1141–1144; (b) M. Lee, B.K. Cho, W.C. Zin, Supramolecular structures from rod coil block copolymers, Chem. Rev. 101 (2001) 3869–3892.

    3. [3]

      [3] J.W. Goodby, J.P. Collings, T. Kato, et al., Handbook of Liquid Crystals, second ed., Wiley-VCH, Weinheim, Germany, 2014.

    4. [4]

      [4] M. Bremer, P. Kirsch, M. Klasen-Memmer, et al., The TV in your pocket: development of liquid-crystal materials for the new millennium, Angew. Chem. Int. Ed. 52 (2013) 8880–8896.

    5. [5]

      [5] C. Tschierske, Development of structural complexity by liquid crystal self-assembly, Angew. Chem. Int. Ed. 52 (2013) 8828–8878.

    6. [6]

      [6] (a) D.R. Link, G. Natale, R. Shao, et al., Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules, Science 278 (1997) 1924–1927; (b) R.A. Reddy, C. Tschierske, Bent-core liquid crystals: polar order, superstructural chirality and spontaneous desymmetrisation in soft matter systems, J. Mater. Chem. 16 (2006) 907–961; (c) H. Takezoe, Y. Takanishi, Bent-core liquid crystals: their mysterious and attractive world, Jpn. J. Appl. Phys. 45 (2006) 597–625; (d) A. Eremin, A. Jakli, Polar bent-shape liquid crystals – from molecular bend to layer splay and chirality, Soft Matter 9 (2013) 615–637.

    7. [7]

      [7] (a) M. Kölbel, T. Beyersdorff, X.H. Cheng, et al., Design of liquid crystalline block molecules with nonconventional mesophase morphologies: calamitic bolaamphiphiles with lateral alkyl chains, J. Am. Chem. Soc. 123 (2001) 6809–6818; (b) X.H. Cheng, M. Prehm, M.K. Das, et al., Calamitic bolaamphiphiles with (semi)perfluorinated lateral chains: polyphilic block molecules with new liquid crystalline phase structures, J. Am. Chem. Soc. 125 (2003) 10977–10996; (c) M. Prehm, F. Liu, U. Baumeister, et al., The giant-hexagon cylinder network – a liquid-crystalline organization formed by a T-shaped quaternary amphiphile, Angew. Chem. Int. Ed. 46 (2007) 7972–7975; (d) M. Prehm, C. Enders, M.Y. Anzahaee, et al., Distinct columnar and lamellar liquid crystalline phases formed by new bolaamphiphiles with linear and branched lateral hydrocarbon chains, Chem. Eur. J. 14 (2008) 6352–6368.

    8. [8]

      [8] (a) C. Tschierske, Liquid crystal engineering–new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering, Chem. Soc. Rev. 36 (2007) 1930–1970; (b) C. Tschierske, C. Nurnberger, H. Ebert, et al. Interface Focus 2 (2011) 669–680; (c) G. Ungar, C. Tschierske, V. Abetz, et al., Self-assembly at different length scales: polyphilic star-branched liquid crystals and miktoarm star copolymers, Adv. Funct. Mater. 21 (2011) 1296–1323.

    9. [9]

      [9] X.H. Cheng, X. Dong, R. Huang, et al., Polygonal cylinder phases of 3-alkyl-2,5- diphenylthiophene-based bolaamphiphiles: changing symmetry by retaining net topology, Chem. Mater. 20 (2008) 4729–4738.

    10. [10]

      [10] (a) M. Prehm, G. Götz, P. Bäuerle, et al., Complex liquid-crystalline superstructure of a π-conjugated oligothiophene, Angew. Chem. Int. Ed. 46 (2007) 7856–7859; (b) X.H. Cheng, X. Dong, G.H. Wei, et al., Liquid-crystalline triangle honeycomb formed by a dithiophene based X-shaped bolaamphiphile, Angew. Chem. Int. Ed. 48 (2009) 8014–8017.

    11. [11]

      [11] H.F. Gao, Y.F. Ye, L.Y. Kong, et al., Dithiophene based X-shaped bolaamphiphiles: liquid crystals with single wall honeycombs and geometric frustration, Soft Matter 8 (2012) 10921–10931.

    12. [12]

      [12] X.H. Cheng, H.F. Gao, X.P. Tan, et al., Transition between triangular and square tiling patterns in liquid-crystalline honeycombs formed by tetrathiophene-based bolaamphiphiles, Chem. Sci. 4 (2013) 3317–3331.

    13. [13]

      [13] W. Bu, H.F. Gao, X.P. Tan, et al., A bolaamphiphilic sexithiophene with liquid crystalline triangular honeycomb phase, Chem. Commun. 49 (2013) 1756–1758.

    14. [14]

      [14] (a) B. Glettner, F. Liu, X.B. Zeng, et al., Liquid-crystal engineering with anchorshaped molecules: honeycombs with hexagonal and trigonal symmetries formed by polyphilic bent-core molecules, Angew. Chem. Int. Ed. 47 (2008) 6080–6083; (b) B. Glettner, F. Liu, X.B. Zeng, et al., Liquid-crystalline kagome, Angew. Chem. Int. Ed. 47 (2008) 9063–9066; (c) X.B. Zeng, R. Kieffer, B. Glettner, et al., Complex multicolor tilings and critical phenomena in tetraphilic liquid crystals, Science 331 (2011) 1302–1306.

    15. [15]

      [15] G. Hennrich, A. Omenat, I. Asselberghs, et al., Liquid crystals from C3-symmetric mesogens for second-order nonlinear optics, Angew. Chem. Int. Ed. 45 (2006) 4203–4206.

    16. [16]

      [16] B. Glettner, F. Liu, X.B. Zeng, et al., Liquid-crystal engineering with anchor-shaped molecules: honeycombs with hexagonal and trigonal symmetries formed by polyphilic bent-core molecules, Angew. Chem. Int. Ed. 47 (2008) 6080–6083.

    17. [17]

      [17] H.F. Gao, H.F. Cheng, Q.J. Liu, et al., Tolane-based bent bolaamphiphiles forming liquid crystalline hexagonal honeycombs with trigonal symmetry, New J. Chem. 39 (2015) 2060–2066.

    18. [18]

      [18] C.V. Pham, H.B. Mark, H. Zimmer, A convenient synthesis of 3-alkylthiophenes, Synthetic Commun. 16 (1986) 689–696.

    19. [19]

      [19] M. Melucci, G. Barbarella, M. Zambianchi, et al., Solution-phase microwaveassisted synthesis of unsubstituted and modified a-quinque- and sexithiophenes, J. Org. Chem. 69 (2004) 4821–4828.

    20. [20]

      [20] X.P. Tan, L.Y. Kong, H. Dai, et al., Triblock polyphiles through click chemistry: selfassembled thermotropic cubic phase formed by micellar and monolayer vescular aggregates, Chem. Eur. J. 19 (2013) 16303–16313.

    21. [21]

      [21] R. Strzycki, Pyridinium tosylate, a mild catalyst for formation and cleavage of dioxolane-type acetals, Synthesis (1979) 724–725.

    22. [22]

      [22] (a) T. Ichikawa, M. Yoshio, S. Taguchi, et al., Co-organisation of ionic liquids with amphiphilic diethanolamines: construction of 3D continuous ionic nanochannels through the induction of liquid-crystalline bicontinuous cubic phases, Chem. Sci. 3 (2012) 2001–2008; (b) E.C. Wijaya, T.L. Greaves, C.J. Drummond, Linking molecular/ion structure, solvent mesostructure, the solvophobic effect and the ability of amphiphiles to self-assemble in non-aqueous liquids, Faraday Discuss. 167 (2013) 191–215.

    23. [23]

      [23] (a) H.S. Frank, W.Y. Wen, Ion-solvent interaction, structural aspects of ionsolvent interaction in aqueous solutions: a suggested picture of water structure, Discuss. Faraday Soc. 24 (1957) 133–140; (b) L.J. Bellamy, R.L. Pace, Hydrogen bonding by alcohols and phenols—I. The nature of the hydrogen bond in alcohol dimers and polymers, Spectrochim. Acta 22 (1966) 525–534; (c) H. Kleeberg, in: P.L. Huyskens, W.A.P. Luck, T. Zeegers (Eds.), Intermolecular Forces: An Introduction to Modern Methods and Results, Springer, Berlin, 1999, pp. 251–280.

    24. [24]

      [24] I. Kataoka, N. Kitadai, O. Hisatomi, et al., Nature of hydrogen bonding of water molecules in aqueous solutions of glycerol by attenuated total reflection (ATR) infrared spectroscopy, Appl. Spectrosc. 65 (2011) 436–441.

    25. [25]

      [25] (a) Y. Kanemitsu, N. Shimizu, K. Suzuki, et al., Optical and structural properties of oligothiophene crystalline films, Phys. Rev. B 54 (1996) 2198–2204; (b) A. Yassar, G. Horowitz, P. Valat, et al., Exciton coupling effects in the absorption and photoluminescence of sexithiophene derivatives, J. Phys. Chem. 99 (1995) 9155–9159; (c) T. Yasuda, K. Kishimoto, T. Kato, Columnar liquid crystalline π-conjugated oligothiophenes, Chem. Commun. (2006) 3399–3401; (d) X.H. Cheng, F. Liu, X.B. Zeng, et al., Influence of flexible spacers on liquidcrystalline self-assembly of T-shaped bolaamphiphiles, J. Am. Chem. Soc. 133 (2011) 7872–7881.

    26. [26]

      [26] (a) Z.P. Liu, C.L. Zhang, W.J. He, et al., A charge transfer type pH responsive fluorescent probeandits intracellularapplication,NewJ.Chem.34(2010) 656–660; (b) S. Yao, K.J. Schafer-Hales, K.D. Belfield, A new water-soluble near-neutral ratiometric fluorescent pH indicator, Org. Lett. 9 (2007) 5645–5648.

    27. [27]

      [27] Q. Yan, Z. Luo, K. Cai, et al., Chemical designs of functional photoactive molecular assemblies, Chem. Soc. Rev. 43 (2014) 4199–4221.

  • 加载中
    1. [1]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    2. [2]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    3. [3]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    4. [4]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    5. [5]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    6. [6]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    7. [7]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    8. [8]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    9. [9]

      Lizhang Chen Yu Fang Mingxin Pang Ruoxu Sun Lin Xu Qixing Zhou Yawen Tang . Interfacial engineering of core/satellite-structured RuP/RuP2 heterojunctions for enhanced pH-universal hydrogen evolution reaction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100461-100461. doi: 10.1016/j.cjsc.2024.100461

    10. [10]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    11. [11]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    12. [12]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    13. [13]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    14. [14]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    15. [15]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    16. [16]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    17. [17]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    18. [18]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    19. [19]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    20. [20]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

Metrics
  • PDF Downloads(0)
  • Abstract views(578)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return