Citation:
Feng Yu, Ming-Yuan Zhu, Fei-Hong Ouyang, Bin Dai, Jian-Ming Dan. Hydrochlorination of acetylene using expanded multilayered vermiculite (EML-VMT)-supported catalysts[J]. Chinese Chemical Letters,
;2015, 26(9): 1101-1104.
doi:
10.1016/j.cclet.2015.05.020
-
Catalyst supports have very important effects on catalyst performance. A novel expanded multilayered vermiculite (EML-VMT) is successfully used as the catalyst support for the acetylene hydrochlorination. By mixing carbon on the surface of EML-VMT (i.e., EML-VMT-C), the HgCl2/EML-VMT-C achieved a high acetylene conversion of 97.3%, a vinyl chloride selectivity of 100% and a turn over frequency (TOF) value of 8.83×10-3 s-1 at a temperature of 140℃, an acetylene gas hourly space velocity (GHSV) of 108 h-1, and a feed volume ratio V(HCl)/V(C2H2) of 1.15. Moreover, the HgCl2/EML-VMT-C shows good stability. The EML-VMT also shows potential in the preparation of other EML-VMT-supported catalysts.
-
-
-
[1]
[1] X.Y. Li, M.Y. Zhu, B. Dai, AuCl3 on polypyrrole-modified carbon nanotubes as acetylene hydrochlorination catalysts, Appl. Catal. B:Environ. 142-143(2013) 234-240.
-
[2]
[2] J.L. Zhang, N. Liu, W. Li, B. Dai, Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts, Front. Chem. Sci. Eng. 5(2011) 514-520.
-
[3]
[3] K. Zhou, B. Li, Q. Zhang, et al., The catalytic pathways of hydrohalogenation over metal-free nitrogen-doped carbon nanotubes, ChemSusChem 7(2014) 723-728.
-
[4]
[4] K. Zhou, J.C. Jia, X.G. Li, et al., Continuous vinyl chloride monomer production by acetylene hydrochlorination on Hg-free bismuth catalyst:from lab-scale catalyst characterization, catalytic evaluation to a pilot-scale trial by circulating regeneration in coupled fluidized beds, Fuel Process. Technol. 108(2013) 12-18.
-
[5]
[5] H. Bremer, H. Lieske, Kinetics of the hydrochlorination of acetylene on HgCl2/active carbon catalysts, Appl. Catal. 18(1985) 191-203.
-
[6]
[6] C.Y. Hou, L.R. Feng, F.L. Qiu, Highly active catalyst for vinyl acetate synthesis by modified activated carbon, Chin. Chem. Lett. 20(2009) 865-868.
-
[7]
[7] X.Y. Li, X.L. Pan, X.H. Bao, Nitrogen doped carbon catalyzing acetylene conversion to vinyl chloride, J. Energy Chem. 23(2014) 131-135.
-
[8]
[8] J.H. Xu, J. Zhao, J.T. Xu, et al., Influence of surface chemistry of activated carbon on the activity of gold/activated carbon catalyst in acetylene hydrochlorination, Ind. Eng. Chem. Res. 53(2014) 14272-14281.
-
[9]
[9] K. Zhou, J.C. Jia, C.H. Li, et al., A low content Au-based catalyst for hydrochlorination of C2H2 and its industrial scale-up for future PVC processes, Green Chem. 17(2015) 356-364.
-
[10]
[10] K. Zhou, J.K. Si, J.C. Jia, et al., Reactivity enhancement of N-CNTs in green catalysis of C2H2 hydrochlorination by a Cu catalyst, RSC Adv. 4(2014) 7766-7769.
-
[11]
[11] X.Y. Li, X.L. Pan, L. Yu, et al., Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene, Nat. Commun. 5(2014) 3688.
-
[12]
[12] J. Zhang, T.Y. Liu, R. Chen, X.H. Liu, Vermiculite as a natural silicate crystal for hydrogen generation from photocatalytic splitting of water under visible light, RSC Adv. 4(2014) 406-408.
-
[13]
[13] F.H. do Nascimento, J.C. Masini, Influence of humic acid on adsorption of Hg(II) by vermiculite, J. Environ. Manag. 143(2014) 1-7.
-
[14]
[14] Y.F. Liu, Z.H. He, L. Zhou, Z.S. Hou, W.M.J. Eli, Simultaneous oxidative conversion and CO2 reforming of methane to syngas over Ni/vermiculite catalysts, Catal. Commun. 42(2013) 40-44.
-
[15]
[15] L.C.R. Machado, C.B. Torchia, R.M. Lago, Floating photocatalysts based on TiO2 supported on high surface area exfoliated vermiculite for water decontamination, Catal. Commun. 7(2006) 538-541.
-
[16]
[16] Y. Sun, L. Liu, D.Z. Jia, J.H. Liu, Preparation and properties of vermiculite supported TiO2 photocatalyst, Chin. J. Inorg. Chem. 27(2011) 40-46.
-
[17]
[17] X.G. Wang, B. Dai, Y. Wang, F. Yu, Nitrogen-doped pitch-based spherical active carbon as a nonmetal catalyst for acetylene hydrochlorination, ChemCatChem 6(2014) 2339-2344.
-
[18]
[18] H.Y. Zhang, B. Dai, W. Li, et al., Non-mercury catalytic acetylene hydrochlorination over spherical activated-carbon-supported Au-Co (III)-Cu (II) catalysts, J. Catal. 316(2014) 141-148.
-
[19]
[19] M.Y. Zhu, L.H. Kang, Y. Su, S.Z. Zhang, B. Dai, MClx (M=Hg, Au, Ru; x=2, 3) catalyzed hydrochlorination of acetylene-A density functional theory study, Can. J. Chem. 91(2013) 120-125.
-
[20]
[20] F. Yu, L.L. Zhang, M.Y. Zhu, et al., Overwhelming microwave irradiation assisted synthesis of olivine-structured LiMPO4(M=Fe, Mn, Co and Ni) for Li-ion batteries, Nano Energy 3(2014) 64-79.
-
[21]
[21] F. Yu, S.H. Lim, Y.D. Zhen, Y.X. An, J.Y. Lin, Optimized electrochemical performance of three-dimensional porous LiFePO4/C microspheres via microwave irradiation assisted synthesis, J. Power Sources 271(2014) 223-230.
-
[22]
[22] Y.-H. Ma, G. Wu, N. Jiang, et al., Microwave-assisted, facile, rapid and solvent-free one pot two-component synthesis of some special acylals, Chin. Chem. Lett. 26(2015) 81-84.
-
[23]
[23] S. Ittu, N. Constantin, Some characteristics of vermiculite mineral, Metal. Int. 18(2013) 73-76.
-
[24]
[24] S. Hillier, E.M.M. Marwa, C.M. Rice, On the mechanism of exfoliation of 'Vermiculite', Clay Miner. 48(2013) 563-582.
-
[25]
[25] X.X. Huo, L.M. Wu, L.B. Liao, Z.G. Xia, L.J. Wang, The effect of interlayer cations on the expansion of vermiculite, Powder Technol. 224(2012) 241-246.
-
[26]
[26] L.L. Xu, X.G. Wang, H.Y. Zhang, et al., Application of a novel carbon carrier in acetylene hydrochlorination, Chem. Ind. Eng. Prog. 30(2011) 536-541.
-
[1]
-
-
-
[1]
Yongsheng Xu , Lisha Yao , Jian Li , Yanzhao Dong , Dongyang Xie , Miaomiao Zhang , Feng Li , Yunsheng Dai , Jinli Zhang , Haiyang Zhang . Dual-ligand engineering over Au-based catalyst for efficient acetylene hydrochlorination. Chinese Chemical Letters, 2025, 36(3): 110318-. doi: 10.1016/j.cclet.2024.110318
-
[2]
Linfeng Li , Bao Wang , Tiantong Zhang , Xinyuan Wang , Dingqiang Feng , Wei Li , Jiangjiexing Wu , Jinli Zhang . Identifying the catalytic active site of durable Ru-based liquid-phase catalyst for acetylene hydrochlorination. Chinese Chemical Letters, 2025, 36(10): 111303-. doi: 10.1016/j.cclet.2025.111303
-
[3]
Junchen Peng , Xue Yin , Dandan Dong , Zhongyuan Guo , Qinqin Wang , Minmin Liu , Fei He , Bin Dai , Chaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508
-
[4]
Yusheng Lu , Chaofeng Huang , Zhigang Lei , Mingyuan Zhu . Catalytic effects of structural design in N-modified carbon materials for the hydrochlorination of acetylene. Chinese Chemical Letters, 2025, 36(8): 110583-. doi: 10.1016/j.cclet.2024.110583
-
[5]
Junchen Peng , Zhongyuan Guo , Dandan Dong , Yusheng Lu , Bao Wang , Fangjie Lu , Chaofeng Huang , Bin Dai . Cu0/Cuδ+ site construction and its catalytic role in acetylene hydrochlorination. Chinese Chemical Letters, 2025, 36(8): 111208-. doi: 10.1016/j.cclet.2025.111208
-
[6]
Sixiao Liu , Tianyi Wang , Lei Zhang , Chengyin Wang , Huan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058
-
[7]
Shaoming Dong , Yiming Niu , Yinghui Pu , Yongzhao Wang , Bingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525
-
[8]
Huiying LIN , Xiang ZHAO , Banghao WEI , Bufeng WANG , Zhiyong LU , Junfeng BAI . Perfluroalkane functionalization on MOF-808 for acetylene purification. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2103-2114. doi: 10.11862/CJIC.20250110
-
[9]
Chunxiu Yu , Zelin Wu , Hongle Shi , Lingyun Gu , Kexin Chen , Chuan-Shu He , Yang Liu , Heng Zhang , Peng Zhou , Zhaokun Xiong , Bo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334
-
[10]
Hongzhe GUO , Sen WANG , Lu YANG , Fucheng LIU , Jiongpeng ZHAO , Zhaoquan YAO . Highly selective acetylene capture by a pacs-type metal-organic framework constructed using metal-formate complexes as pore partition units. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2157-2164. doi: 10.11862/CJIC.20250179
-
[11]
Doudou Liu , Weiwei Guo , Guoliang Mei , Youpeng Dan , Rong Yang , Chao Huang , Yanling Zhai , Xiaoquan Lu . Application of catalyst Cu-t-ZrO2 based on the electronic metal-support interaction in electrocatalytic nitrate reduction. Chinese Chemical Letters, 2025, 36(8): 110578-. doi: 10.1016/j.cclet.2024.110578
-
[12]
Qijun Tang , Wenguang Tu , Yong Zhou , Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170
-
[13]
Xiaoli CHEN , Zhihong LUO , Yuzhu XIONG , Aihua WANG , Xue CHEN , Jiaojing SHAO . Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1661-1671. doi: 10.11862/CJIC.20250075
-
[14]
Jinzhou Zheng , Chaozheng He , Chenxu Zhao . Rational catalyst design for N2 electro-reduction: Regulation strategies and quick screen towards enhanced conversion efficiency. Chinese Chemical Letters, 2025, 36(7): 111056-. doi: 10.1016/j.cclet.2025.111056
-
[15]
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
-
[16]
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
-
[17]
Dong Sui , Jiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417
-
[18]
Yunxia Liu , Guandong Wu , Lin Li , Yiming Niu , Bingsen Zhang , Botao Qiao , Junhu Wang . Construction of sintering-resistant gold catalysts via ascorbic-acid inducing strong metal-support interactions. Chinese Chemical Letters, 2025, 36(4): 110608-. doi: 10.1016/j.cclet.2024.110608
-
[19]
Xinyu Hu , Bo Song , Shukai Song , Qinghui Ling , Bangkun Yue , Lianrui Hu , Feifei Wang , Li He , Lin Xu . Development of luminescent metallohelicate as a selective chloride transporter. Chinese Chemical Letters, 2025, 36(12): 110918-. doi: 10.1016/j.cclet.2025.110918
-
[20]
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1391)
- HTML views(60)
Login In
DownLoad: