Citation: Aysegul Kutluay, Mehmet Aslanoglu. Quantification of methyldopa in pharmaceuticals using a glassy carbon electrode modified with carbon nanotubes[J]. Chinese Chemical Letters, ;2016, 27(01): 91-95. doi: 10.1016/j.cclet.2015.04.038 shu

Quantification of methyldopa in pharmaceuticals using a glassy carbon electrode modified with carbon nanotubes

  • Corresponding author: Mehmet Aslanoglu, 
  • Received Date: 4 January 2015
    Available Online: 1 April 2015

  • The quantification of methyldopa in pharmaceuticals has been carried out using a glassy carbon electrode(GCE) modified with multi-walled carbon nanotubes(MWCNTs). Methyldopa exhibited a quasi-reversible response with a peak potential separation of 473 mV on a bare GCE. However, the cyclic voltammetric behaviour of methyldopa was improved with the increase of the amount of MWCNTs. It was also shown that the electrocatalytic activity of the electrode towards the response of methyldopa was higher with larger amount of film on the surface. The results showed that the peak current was proportional to the concentration of methyldopa with a linear dynamic range of 0.005-0.388μmol/L and a detection limit of 1.0 nmol/L was obtained using square wave voltammetry. The experimental data showed that the detection limit of methyldopa and peak separation from interfering compounds such as ascorbic acid(AA) and uric acid(UA) were improved using the proposed procedure. The method was successfully applied for the determination of methyldopa in pharmaceuticals.
  • 加载中
    1. [1]

      [1] P.R.S. Ribeiro, J.A. Gomes Neto, L. Pezza, H.R. Pezza, Flow-injection spectrophotometric determination of methyldopa in pharmaceutical formulations, Talanta 67(2005) 240-244.

    2. [2]

      [2] E.A. Gadkariem, K.E.E. Ibrahim, N.A.A. Kamil, M.E.M. Haga, H.A. El-Obeid, A new spectrophotometric method for the determination of methyldopa, Saudi Pharm. J. 17(2009) 289-293.

    3. [3]

      [3] M. Tubino, D.C.D.V. Batista, J.A.R. Rodrigues, Kinetic method for the determination of alpha-methyldopa in pharmaceutical preparations:analytical procedure and reaction mechanism considerations, Anal. Lett. 39(2006) 327-339.

    4. [4]

      [4] S. Li, H. Wu, Y. Yu, et al., Quantitative analysis of levodopa, carbidopa and methyldopa in human plasma samples using HPLC-DAD combined with second-order calibration based on alternating trilinear decomposition algorithm, Talanta 81(2010) 805-812.

    5. [5]

      [5] C. Muzzi, E. Bertocci, L. Terzuoli, et al., Simultaneous determination of serum concentrations of levodopa, dopamine, 3-O-methyldopa and alpha-methyldopa by HPLC, Biomed. Pharmacother. 62(2008) 253-258.

    6. [6]

      [6] T.S. James, C.L.O. Hoo, D.M. William, Determination of methyldopa in pharmaceutical dosage forms and biological fluids based on oxidation at the tubular carbon electrode, J. Pharm. Sci. 63(2006) 954-955.

    7. [7]

      [7] L.K. Abdulrahman, A.M. Al-Abachi, M.H. Al-Qaissy, Flow injection-spectrophotometeric determination of some catecholamine drugs in pharmaceutical preparations via oxidative coupling reaction with p-toluidine and sodium periodate, Anal. Chim. Acta 538(2005) 331-335.

    8. [8]

      [8] Z. Talebpour, S. Haghgoo, M. Shamsipur, 1H nuclear magnetic resonance spectroscopy analysis for simultaneous determination of levodopa, carbidopa and methyldopa in human serum and pharmaceutical formulations, Anal. Chim. Acta 506(2004) 97-104.

    9. [9]

      [9] S.K. Moccelini, A.C. Franzoi, I.C. Vieira, J. Dupont, C.W. Scheeren, A novel support for laccase immobilization:cellulose acetate modified with ionic liquid and application in biosensor for methyldopa detection, Biosens. Bioelectron. 26(2011) 3549-3554.

    10. [10]

      [10] M.B. Gholivand, M. Amiri, Preparation of polypyrrole/nuclear fast red films on gold electrode and its application on the electrocatalytic determination of methyl-dopa and ascorbic acid, Electroanalysis 21(2009) 2461-2467.

    11. [11]

      [11] S. Shahrokhian, S. Rastgar, Electrodeposition of Pt-Ru nanoparticles on multiwalled carbon nanotubes:application in sensitive voltammetric determination of methyldopa, Electrochim. Acta 58(2011) 125-133.

    12. [12]

      [12] A. Kutluay, M. Aslanoglu, Nickel nanoparticles functionalized multi-walled carbon nanotubes at platinum electrodes for the detection of bromhexine, Sens. Actuators B 192(2014) 720-724.

    13. [13]

      [13] Xi. Yang, B. Feng, P. Yang, Y. Ding, Y. Chen, J. Fei, Electrochemical determination of toxic ractopamine at an ordered mesoporous carbon modified electrode, Food Chem. 145(2014) 619-624.

    14. [14]

      [14] H.R. Zare, F. Chatraei, Preparation and electrochemical characteristics of electrodeposited acetaminophen on ruthenium oxide nanoparticles and its role as a sensor for simultaneous determination of ascorbic acid, dopamine and N-acetylL-cysteine, Sens. Actuators B 160(2011) 1450-1457.

    15. [15]

      [15] A. Salimi, S. Lashgari, A. Noorbakhsh, Carbon nanotubes-ionic liquid and chloropromazine modified electrode for determination of NADH and fabrication of ethanol biosensor, Electroanalysis 22(2010) 1707-1716.

    16. [16]

      [16] X.H. Liu, L. Li, X.P. Zhao, X.Q. Lu, Electrochemical behavior of rutin on a multiwalled carbon nanotube and ionic liquid composite film modified electrode, Colloids Surf. B 81(2010) 344-349.

    17. [17]

      [17] A. Kutluay, M. Aslanoglu, Selective detection of albuterol in the presence of uric acid using a glassy carbon electrode modified with multi-walled carbon nanotubes and poly(pivalic acid), Sens. Actuators B 177(2013) 703-709.

    18. [18]

      [18] A. Babaei, M. Zendehdel, B. Khalilzadeh, A. Taheri, Simultaneous determination of tryptophan, uric acid and ascorbic acid at iron(ⅡI) doped zeolite modified carbon paste electrode, Colloids Surf. B 66(2006) 226-232.

    19. [19]

      [19] H. Beitollahi, I. Sheikhshoaie, Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum(VI) complex-carbon nanotube paste electrode, Electrochim. Acta 56(2011) 10259-10263.

    20. [20]

      [20] R. Hosseinzadeh, R.E. Sabzi, K. Ghasemlu, Effect of cetyltrimethyl ammonium bromide(CTAB) in determination of dopamine and ascorbic acid using carbon paste electrode modified with tin hexacyanoferrate, Colloids Surf. B 68(2009) 213-217.

    21. [21]

      [21] J.B. Raoof, R. Ojani, H. Beitollahi, L-Cysteine voltammetry at a carbon paste electrode bulk-modified with ferrocenedicarboxylic acid, Electroanalysis 19(2007) 1822-1830.

    22. [22]

      [22] H.F. Zhang, Z.C. Meng, Q. Wang, J.B. Zheng, A novel glucose biosensor based on direct electrochemistry of glucose oxidase incorporated in biomediated gold nanoparticles-carbon nanotubes composite film, Sens. Actuators B 158(2011) 23-27.

    23. [23]

      [23] H.R. Zare, N. Nasirizadeh, H. Ajamain, A. Sahragard, Preparation, electrochemical behavior and electrocatalytic activity of chlorogenic acid multi-wall carbon nanotubes as a hydroxylamine sensor, Mater. Sci. Eng. C 31(2011) 975-982.

    24. [24]

      [24] A. Kutluay, M. Aslanoglu, Multi-walled carbon nanotubes/electro-copolymerized cobalt nanoparticles-poly(pivalic acid) composite film coated glassy carbon electrode for the determination of methimazole, Sens. Actuators B 171-172(2012) 1216-1221.

    25. [25]

      [25] M.M. Rahman, M.J.A. Shiddiky, M.D.A. Rahman, Y.D. Shim, A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide(oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film, Anal. Biochem. 384(2009) 159-165.

    26. [26]

      [26] M. Keyvanfard, R. Shakeri, H. Karimi-Maleh, K. Alizad, Highly selective and sensitive voltammetric sensor based on modified multiwall carbon nanotube paste electrode for simultaneous determination of ascorbic acid, acetaminophen and tryptophan, Mater. Sci. Eng. C 33(2013) 811-816.

    27. [27]

      [27] M. Keyvanfard, M. Ahmadi, F. Karimi, K. Alizad, Voltammetric determination of cysteamine at multiwalled carbon nanotubes paste electrode in the presence of isoproterenol as a mediator, Chin. Chem. Lett. 25(2014) 1244-1246.

    28. [28]

      [28] T.L. Lu, Y.C. Tsai, Sensitive electrochemical determination of acetaminophen in pharmaceutical formulations at multiwalled carbon nanotube-alumina-coated silica nanocomposite modified electrode, Sens. Actuators B 153(2011) 439-444.

    29. [29]

      [29] M.C. Henstridge, E.J.F. Dickinson, M. Aslanoglu, C. Batchelor-McAuley, R.G. Compton, Voltammetric selectivity conferred by the modification of electrodes using conductive porous layers or films:The oxidation of dopamine on glassy carbon electrodes modified with multiwalled carbon nanotubes, Sens. Actuators B 145(2010) 417-427.

    30. [30]

      [30] United States Pharmacopeia National Formulary 23rd Revision, US Pharmacopeial Convention, Rockville, MD, 1995.

    31. [31]

      [31] I. da Cruz Vieira, O. Fatibello-Filho, Spectrophotometric determination of methyldopa and dopamine in pharmaceutical formulations using a crude extract of sweet potato root(Ipomoea batatas(L.) Lam.) as enzymatic source, Talanta 46(1998) 559-564.

  • 加载中
    1. [1]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    2. [2]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    3. [3]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    4. [4]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    5. [5]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    6. [6]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    7. [7]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    8. [8]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    9. [9]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    10. [10]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    11. [11]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    12. [12]

      Fengyun LiZerong PeiShuting ChenGen liMengyang LiuLiqin DingJingbo LiuFeng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752

    13. [13]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    14. [14]

      Peizhe LiQiaoling LiuMengyu PeiYuci GanYan GongChuchen GongPei WangMingsong WangXiansong WangDa-Peng YangBo LiangGuangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457

    15. [15]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    16. [16]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    17. [17]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    18. [18]

      Xinyue LanJunguang LiangChuran WenXiaolong QuanHuimin LinQinqin XuPeixian ChenGuangyu YaoDan ZhouMeng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616

    19. [19]

      Dexuan XiaoTianyu ChenTianxu ZhangSirong ShiMei ZhangXin QinYunkun LiuLongjiang LiYunfeng Lin . Transdermal treatment for malignant melanoma by aptamer-modified tetrahedral framework nucleic acid delivery of vemurafenib. Chinese Chemical Letters, 2024, 35(4): 108602-. doi: 10.1016/j.cclet.2023.108602

    20. [20]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

Metrics
  • PDF Downloads(0)
  • Abstract views(662)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return