Citation: Rui Tao, Xue-Jiao Yin, Ke-Hu Wang, Yu-Zhuo Niu, Ya-Lin Wang, Dan-Feng Huang, Ying-Peng Su, Jin-Xian Wang, Yu-Lai Hu, Ying Fu, Zheng-Yin Du. Solvent free synthesis of trifluoromethyl tertiary alcohols by cross Aldol reaction[J]. Chinese Chemical Letters, ;2015, 26(8): 1046-1049. doi: 10.1016/j.cclet.2015.04.015 shu

Solvent free synthesis of trifluoromethyl tertiary alcohols by cross Aldol reaction

  • Corresponding author: Ke-Hu Wang,  Yu-Lai Hu, 
  • Received Date: 10 January 2015
    Available Online: 24 March 2015

    Fund Project: We are thankful for the financial support from the National Natural Science Foundation of China (No. 21262031) (No. 21262031)

  • Exceedingly fast preparation of trifluoromethyl tertiary alcohols has been accomplished from methyl ketones and trifluoromethyl ketones under solvent free conditions by cross Aldol reaction. The reaction was achieved in the presence of common inorganic base by grinding method at ambient temperature to give β-trifluoromethyl-β-hydroxyl ketones in high yields (up to 95%).
  • 加载中
    1. [1]

      [1] (a) R. Filler, Y. Kobayashi, L.M. Yagupolskii, Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications, Elsevier, Amsterdam, 1993; (b) R.E. Banks, B.E. Smart, C.J. Tatlow, Organofluorine Chemistry: Principles and Comercial Applications, Springer, New York, 1994, pp. 237-262; (c) T. Hiyama, Organofluorin Compounds: Chemistry and Application, Springer, Berlin, 2000, pp. 183-234; (d) W.P. Gu, J.H. Lin, J.C. Xiao, Direct N-gem-difluorocyclopropylation of nitroheterocycles by utilizing gem-difluorocyclopropyl tosylate, Chin. Chem. Lett. 25 (2014) 24-28.

    2. [2]

      [2] (a) K. Mü ller, C. Faeh, F. Diederich, Fluorine in pharmaceuticals: looking beyond intuition, Science 317 (2007) 1881-1886; (b) S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Fluorine in medicinal chemistry, Chem. Soc. Rev. 37 (2008) 320-330; (c) W.K. Hagmann, The many roles for fluorine in medicinal chemistry, J. Med. Chem. 51 (2008) 4359-4369.

    3. [3]

      [3] H. Kawai, S. Okusu, E. Tokunaga, N. Shibata, Enantioselective synthesis of 5-trifluoromethyl-2-isoxazolines and their N-oxides by [hydroxy(tosyloxy)iodo] benzene-mediated oxidative N-O coupling, Eur. J. Org. Chem. 29 (2013) 6506-6509.

    4. [4]

      [4] P.V. Ramachandran, Asymmetric Fluoroorganic Chemistry: synthesis, Application and Future Directions, ACS, Washington, 1999, pp. 255-269.

    5. [5]

      [5] (a) J. Ren, J. Milton, K.L. Weaver, S.A. Short, D.I. Stuart, D.K. Stammers, Structural basis for the resilience of efavirenz (DMP-266) to drug resistance mutations in HIV-1 reverse transcriptase, Structure 8 (2000) 1089-1094; (b) O.S. Pedersen, E.B. Pedersen, The flourishing syntheses of non-nucleoside reverse transcriptase inhibitors, Synthesis 4 (2000) 479-495.

    6. [6]

      [6] S. Sasaki, K. Kikuchi, T. Yamuchi, K. Higashiyama, Direct Aldol reaction of trifluoromethyl ketones with ketone catalyzed by Et2Zn and secondary amines, Synlett 10 (2011) 1431-1434.

    7. [7]

      [7] (a) L.H. Qiu, Z.X. Shen, C.Q. Shi, Y.H. Liu, Y.W. Zhang, Proline catalyzed asymmetric Aldol reaction between methyl ketones and 1-aryl-2 2,2-trifluoroethanones, Chin. J. Chem. 23 (2005) 584-588; (b) N. Duangdee, W. Harnying, G. Rulli, et al., Highly enantioselective organocatalytic trifluoromethyl carbinol synthesis -a caveat on reaction times and product isolation, J. Am. Chem. Soc. 134 (2012) 11196-11205; (c) N. Hara, R. Tamura, Y. Funahashi, S. Nakamura, N-(heteroarenesulfonyl) prolinamides-catalyzed Aldol reaction between acetone and aryl trihalomethyl ketones, Org. Lett. 13 (2011) 1662-1665; (d) Y. Zheng, H.Y. Xiong, J. Nie, M.Q. Hua, J.A. Ma, Biomimetic catalytic enantioselective decarboxylative Aldol reaction of β-keto acids with trifluoromethyl ketones, Chem. Commun. 48 (2012) 4308-4310.

    8. [8]

      [8] (a) M.A.P. Martins, C.P. Frizzo, D.N. Moreira, L. Buriol, P. Machado, Solvent-free heterocyclic synthesis, Chem. Rev. 109 (2009) 4140-4182; (b) G. Choudhary, R. Krishna Peddinti, An expeditious, highly efficient, catalystfree and solvent-free synthesis of nitroamines and nitrosulfides by Michael addition, Green Chem. 13 (2011) 276-282; (c) A. Kumar, S. Sharma, A grinding-induced catalyst-and solvent-free synthesis of highly functionalized 1,4-dihydropyridines via a domino multicomponent reaction, Green Chem. 13 (2011) 2017-2020; (d) D. Wang, J. Li, N. Li, T. Gao, S. Hou, B. Chen, An efficient approach to homocoupling of terminal alkynes: solvent-free synthesis of 1,3-diynes using catalytic Cu (II) and base, Green Chem. 12 (2010) 45-48; (e) B.R. Vaddula, R.S. Varma, J. Leazer, Mixing with microwaves: solvent-free and catalyst-free synthesis of pyrazoles and diazepines, Tetrahedron Lett. 54 (2013) 1538-1541; (f) J. Yang, N. Li, S. Li, W. Wang, L. Li, A. Wang, X. Wang, Synthesis of diesel and jet fuel range alkanes with furfural and ketones from lignocellulose under solvent free conditions, Green Chem. 16 (2014) 4879-4884; (g) S. Yan, Y. Chen, L. Liu, N. He, J. Lin, Three-component solvent-free synthesis of highly substituted bicyclic pyridines containing a ring-junction nitrogen, Green Chem. 12 (2010) 2043-2052; (h) Y.H. Ma, G. Wu, N. Jiang, et al., Microwave-assisted, facile, rapid and solventfree one pot two-component synthesis of some special acylals, Chin. Chem. Lett. 26 (2015) 81-84.

    9. [9]

      [9] (a) H.W. Zhan, J.X. Wang, X.T. Wang, Solvent-and catalyst-free synthesis of dihydropyrimidinthiones in one-pot under focused microwave irradiation conditions, Chin. Chem. Lett. 19 (2008) 1183-1185; (b) X.Q. Men, T.J. Meng, J.X. Wang, L. Xin, Pd(II) catalyzed addition reaction of benzylzinc bromides or allylzinc iodines with aromatic aldehydes, Chin. J. Org. Chem. 27 (2007) 272-275; (c) J.X. Wang, N. An, Solvent-free synthesis of 1 4-bis(3-aryl-3-oxo-3-propenyl)-benzenes under grind condition, J. Northw. Norm. Univ. (Nat. Sci.) 47 (2011) 59-62.

    10. [10]

      [10] J. Xu, Y. Hu, D. Huang, et al., Thiourea-catalyzed enantioselective fluorination ofbketo esters, Adv. Synth. Catal. 354 (2012) 515-526.

    11. [11]

      [11] V.Y. Sosnovskikh, I.S. Ovsyannikov, I.A. Aleksandrova, Ketone-ketone condensation with the participation of polyhaloalkyl phenyl ketones, Zh. Org. Khim. 28 (1992) 518-526.

    12. [12]

      [12] J. Nie, H.C. Guo, D. Cahard, J.A. Ma, Asymmetric construction of stereogenic carbon centers featuring a trifluoromethyl group from prochiral trifluoromethylated substrates, Chem. Rev. 111 (2011) 455-529.

    13. [13]

      [13] (a) G. Rothenberg, A.P. Downie, C.L. Raston, J.L. Scott, Understanding solid/solid organic reactions, J. Am. Chem. Soc. 123 (2001) 8701-8708; (b) T. Friščić , W. Jones, Recent advances in understanding the mechanism of cocrystal formation via grinding, Cryst. Growth Des. 9 (2009) 1621-1637; (c) P.R. Patil, K.P.R. Kartha, Application of ball milling technology to carbohydrate reactions: I. Regioselective primary hydroxyl protection of hexosides and nucleoside by planetary ball milling, J. Carbohydr. Chem. 27 (2008) 279-293.

  • 加载中
    1. [1]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    2. [2]

      Xinyuan LiZhuozhu LiWenzhong HuangJiantao LiWei ZhangShihao FengHao FanZhuo ChenSungsik LeeCongcong CaiLiang Zhou . Solvent-free synthesis of Co single atom and nanocluster decorated N-doped carbon for efficient oxygen reduction. Chinese Chemical Letters, 2025, 36(9): 110716-. doi: 10.1016/j.cclet.2024.110716

    3. [3]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    4. [4]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    5. [5]

      Jindong HaoYufen LvShuyue TianChao MaWenxiu CuiHuilan YueWei WeiDong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513

    6. [6]

      Zhenguo ZhangLanyang LiXinlong ZongYongheng LvShuanglei LiuLiang JiXuefei ZhaoZhenhua JiaTeck-Peng Loh . "Water" accelerated B(C6F5)3-catalyzed Mukaiyama-aldol reaction: Outer-sphere activation model. Chinese Chemical Letters, 2025, 36(7): 110504-. doi: 10.1016/j.cclet.2024.110504

    7. [7]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    8. [8]

      Lili ZhangHui GaoGong ZhangYuning DongKai HuangZifan PangTuo WangChunlei PeiPeng ZhangJinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204

    9. [9]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    10. [10]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    11. [11]

      Xiangrong PanXixi HouYuhang DuZhixin PangShiyang HeLan WangJianxue YangLongfei MaoJianhua QinHaixia WuBaozhong LiuZhan ZhouLufang MaChaoliang Tan . Solvent-mediated synthesis of 2D In-TCPP MOF nanosheets for enhanced photodynamic antibacterial therapy. Chinese Chemical Letters, 2025, 36(12): 110536-. doi: 10.1016/j.cclet.2024.110536

    12. [12]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    13. [13]

      Shuli WangXuemin KongSiting CaiYunshu LuoYuxuan GuXiaotong FanGuolong ChenXiao YangZhong ChenYue Lin . Solvent engineering in perovskite nanocrystal colloid inks for super-fine electrohydrodynamic inkjet printing of color conversion microstructures in micro-LED displays. Chinese Chemical Letters, 2025, 36(8): 110976-. doi: 10.1016/j.cclet.2025.110976

    14. [14]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    15. [15]

      Shuangyu WuJian PengYue JiangSijie Lin . The overlooked promotional effects of alcohols to BiOBr catalysts in photocatalytic degradation of organic pollutants. Chinese Chemical Letters, 2025, 36(11): 110819-. doi: 10.1016/j.cclet.2025.110819

    16. [16]

      Rong-Nan YiZi-Jian ZhaoWei-Min He . Photoinduced gold-catalyzed cross-couplings. Chinese Chemical Letters, 2025, 36(7): 111070-. doi: 10.1016/j.cclet.2025.111070

    17. [17]

      Cong-Bin JiDing-Xiong XieMei ChenYe-Ying LanBao-Hua ZhangJi-Ying YangZheng-Hui KangShu-Jie ChenYu-Wei ZhangYun-Lin Liu . Green synthesis of 2-trifluoromethylquinoline skeletons via organocatalytic N-[(α-trifluoromethyl)vinyl]isatins CN bond activation. Chinese Chemical Letters, 2025, 36(7): 110598-. doi: 10.1016/j.cclet.2024.110598

    18. [18]

      Shicheng DongJun Zhu . Could π-aromaticity cross an unsaturated system to a fully saturated one?. Chinese Chemical Letters, 2024, 35(6): 109214-. doi: 10.1016/j.cclet.2023.109214

    19. [19]

      Kai AnQinglong QiaoLoveleshSyed Ali Abbas AbediXiaogang LiuZhaochao Xu . "Superimposed" spectral characteristics of fluorophores arising from cross-conjugation hybridization. Chinese Chemical Letters, 2025, 36(1): 109786-. doi: 10.1016/j.cclet.2024.109786

    20. [20]

      Fuyang YueMingxing LiFei YuanHongjian SongYuxiu LiuQingmin Wang . Deboronative cross-coupling enabled by nickel metallaphotoredox catalysis. Chinese Chemical Letters, 2025, 36(12): 111053-. doi: 10.1016/j.cclet.2025.111053

Metrics
  • PDF Downloads(0)
  • Abstract views(1246)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return