Citation: Dao-Cai Wang, Hang Song, Chun-Yun Xu, Hui Dong, Jie Liu. Direct construction of 3',4'-dihydrospiro[pyrrol-3,2'-oxindoles] through a cascade Michael/cyclization reaction of 3-aminoindolin-2-ones with enones/enals[J]. Chinese Chemical Letters, ;2015, 26(8): 1050-1053. doi: 10.1016/j.cclet.2015.04.014 shu

Direct construction of 3',4'-dihydrospiro[pyrrol-3,2'-oxindoles] through a cascade Michael/cyclization reaction of 3-aminoindolin-2-ones with enones/enals

  • Corresponding author: Jie Liu, 
  • Received Date: 20 January 2015
    Available Online: 3 April 2015

    Fund Project: Financial support for this work by the National Natural Science Foundation of China (No. 81202403) (No. 81202403)

  • A simple and efficient cascade Michael/cyclization reaction of 3-aminoindolin-2-ones with enones/enals was identified for the synthesis of potentially biologically active 3',4'-dihydrospiro[pyrrol-3,2'-oxindoles], using DBU as an efficient catalyst and ethylene glycol as an environmentally benign solvent. More diverse 3',4'-dihydrospiro[pyrrol-3,2'-oxindoles] analog libraries were prepared in good yields (up to 97%). The structure of 3',4'-dihydrospiro[pyrrol-3,2'-oxindoles] was confirmed by mass spectrometry analysis, NMR analysis and single crystal X-ray diffraction. The main advantages of this method include the availability of startingmaterials, simple experimental operation, short reaction time, as well as high yields observed.
  • 加载中
    1. [1]

      [1] R. Rojas-Duran, G. Gonzalez-Aspajo, C. Ruiz-Martel, et al., Anti-inflammatory activity of mitraphylline isolated from Uncaria tomentosa bark, J. Ethnopharmacol. 143 (2012) 801-804.

    2. [2]

      [2] I. Gulcin, S. Beydemir, F. Topal, et al., Apoptotic, antioxidant and antiradical effects of majdine and isomajdine from Vinca herbacea Waldst. and kit, J. Enzyme Inhib. Med. Chem. 27 (2012) 587-594.

    3. [3]

      [3] J.H. Lu, J.Q. Tan, S.S.K. Durairajan, et al., Isorhynchophylline, a natural alkaloid, promotes the degradation of α-synuclein in neuronal cells via inducing autophagy, Autophagy 8 (2012) 98-108.

    4. [4]

      [4] G.G. Cheng, Y.L. Zhao, Y. Zhang, et al., Indole alkaloids from cultivated Vinca major, Tetrahedron 70 (2014) 8723-8729.

    5. [5]

      [5] H.J. Cong, Q. Zhao, S.W. Zhang, et al., Terpenoid indole alkaloids from Mappianthus iodoides Hand. -Mazz., Phytochemistry 100 (2014) 76-85.

    6. [6]

      [6] Y. Arun, K. Saranraj, C. Balachandran, et al., Novel spirooxindole-pyrrolidine compounds: synthesis, anticancer and molecular docking studies, Eur. J. Med. Chem. 74 (2014) 50-64.

    7. [7]

      [7] J.M. Yang, Y. Hu, Q. Li, et al., Efficient and regioselective synthesis of novel functionalized dispiropyrrolidines and their cytotoxic activities, ACS Comb. Sci. 16 (2014) 139-145.

    8. [8]

      [8] B. Yu, X.J. Shi, P.P. Qi, et al., Design, synthesis and biological evaluation of novel steroidal spiro-oxindoles as potent antiproliferative agents, J. Steroid Biochem. Mol. Biol. 141 (2014) 121-134.

    9. [9]

      [9] Y. Kia, H. Osman, R.S. Kumar, et al., Synthesis and discovery of highly functionalized mono-and bis-spiro-pyrrolidines as potent cholinesterase enzyme inhibitors, Bioorg. Med. Chem. Lett. 24 (2014) 1815-1819.

    10. [10]

      [10] A. Kaur, B. Singh, B. Vyas, et al., Synthesis and biological activity of 4-aryl-3-benzoyl-5-phenylspiro[pyrrolidine-2.3'-indolin]-2'-one derivatives as novel potent inhibitors of advanced glycation end product, Eur. J. Med. Chem. 79 (2014) 282-289.

    11. [11]

      [11] A.V. Velikorodov, V.A. Ionova, O.V. Degtyarev, et al., Synthesis and antimicrobial and antifungal activity of carbamate-functionized spiro compounds, Pharm. Chem. J. 46 (2013) 715-719.

    12. [12]

      [12] Y. Arun, G. Bhaskar, C. Balachandran, et al., Facile one-pot synthesis of novel dispirooxindole-pyrrolidine derivatives and their antimicrobial and anticancer activity against A549 human lung adenocarcinoma cancer cell line, Bioorg. Med. Chem. Lett. 23 (2013) 1839-1845.

    13. [13]

      [13] R. Murugan, S. Anbazhagan, S.S. Narayanan, Synthesis and in vivo antidiabetic activity of novel dispiropyrrolidines through [3 + 2] cycloaddition reactions with thiazolidinedione and rhodanine derivatives, Eur. J. Med. Chem. 44 (2009) 3272-3279.

    14. [14]

      [14] R. Rajesh, R. Raghunathan, Synthesis of β-lactam-tethered polycyclic fused heterocycles through a rearrangement by a one-pot tandem [3 + 2] cycloaddition reaction, Eur. J. Org. Chem. 13 (2013) 2597-2607.

    15. [15]

      [15] K. Suman, L. Srinu, S. Thennarasu, Lewis acid catalyzed unprecedented [3 + 2] cycloaddition yields 3,3'-pyrrolidinyldispirooxindoles containing four contiguous chiral stereocenters with two contiguous quaternary spirostereocenters, Org. Lett. 16 (2014) 3732-3735.

    16. [16]

      [16] A. Hemamalini, S. Nagarajan, T.M. Das, A novel class of sugar-based ether-linkeddispirooxindolo-pyrrolidines/pyrrolizidines through [3 + 2]-cycloaddition of azomethine ylides, Carbohydr. Res. 352 (2012) 12-17.

    17. [17]

      [17] S. Purushothaman, R. Prasanna, S. Lavanya, et al., Regio-and stereoselective synthesis of spiro-pyrrolidine/pyrrolizidine/thiazolidine-grafted macrocycles through intramolecular 1,3-dipolar cycloaddition reaction, Tetrahedron Lett. 54 (2013) 5744-5747.

    18. [18]

      [18] H.B. Yang, Y. Wei, M. Shi, Construction of spiro[indoline]oxindoles through onepot thermal-induced [3 + 2] cycloaddition/silica gel-promoted fragmentation sequence between isatin ketonitrones and electron-deficient alkynes, Tetrahedron 69 (2013) 4088-4097.

    19. [19]

      [19] Y.M. Cao, F.F. Shen, F.T. Zhang, et al., Catalytic asymmetric Michael addition/ cyclization of isothiocyanato oxindoles: highly efficient and versatile approach for the synthesis of 3,2'-pyrrolidinyl mono-and bi-spirooxindole frameworks, Chem. Eur. J. 19 (2013) 1184-1188.

    20. [20]

      [20] F. Tan, L.Q. Lu, Q.Q. Yang, et al., Enantioselective cascade Michael addition/ cyclization reactions of 3-nitro-2H-chromenes with 3-isothiocyanato oxindoles: efficient synthesis of functionalized polycyclic spirooxindoles, Chem. Eur. J. 20 (2014) 3415-3420.

    21. [21]

      [21] Y. Sun, J. Sun, C.G. Yan, Synthesis of 1'-aryl-2'-(2-oxoindolin-3-yl)spiro[indoline-3,5'-pyrroline]-2,3'-dione via one-pot reaction of arylamines, acetone, and isatins, Tetrahedron Lett. 53 (2012) 3647-3649.

    22. [22]

      [22] D. Chen, M.H. Xu, Zn-mediated asymmetric allylation of N-tert-butanesulfinyl ketimines: an efficient and practical access to chiral quaternary 3-aminooxindoles, Chem. Commun. 49 (2013) 1327-1329.

    23. [23]

      [23] B. Zhang, P. Feng, L.H. Sun, et al., N-Heterocyclic carbene-catalyzed homoenolate additions with N-aryl ketimines as electrophiles: efficient synthesis of spirocyclic γ-lactam oxindoles, Chem. Eur. J. 18 (2012) 9198-9203.

    24. [24]

      [24] H. Lv, B. Tiwari, J.M. Mo, et al., Highly enantioselective addition of enals to isatinderived ketimines catalyzed by N-heterocyclic carbenes: synthesis of spirocyclic γ-lactams, Org. Lett. 14 (2012) 5412-5415.

    25. [25]

      [25] N. Sharma, Z.H. Li, U.K. Sharma, et al., Facile access to functionalized spiro[indoline-3,2'-pyrrole]-2,5'-diones via post-Ugi domino Buchwald-Hartwig/Michael reaction, Org. Lett. 16 (2014) 3884-3887.

    26. [26]

      [26] A. Srivastava, S.M. Mobin, S. Samanta, (+/-)-CSA catalyzed one-pot synthesis of 6,7-dihydrospiro[indole-3,1'-isoindoline]-2,3',4(1H,5H)-trione derivatives: easy access of spirooxindoles and ibophyllidine-like alkaloids, Tetrahedron Lett. 55 (2014) 1863-1867.

    27. [27]

      [27] M.S. Poslusney, B.J. Melancon, P.R. Gentry, et al., Spirocyclic replacements for the isatin in the highly selective, muscarinic M1 PAM ML137: the continued optimization of an MLPCN probe molecule, Bioorg. Med. Chem. Lett. 23 (2013) 1860-1864.

    28. [28]

      [28] H.A. Soliman, T.A. Salama, Silicon-mediated highly efficient synthesis of 1,8-dioxo-octahydroxanthenes and their transformation to novel functionalized pyrano-tetrazolo [1,5-a] azepine derivatives, Chin. Chem. Lett. 24 (2013) 404-406.

    29. [29]

      [29] V.M. Joshi, R.L. Magar, P.B. Throat, et al., Novel one-pot synthesis of 4H-chromene derivatives using amino functionalized silica gel catalyst, Chin. Chem. Lett. 25 (2014) 455-458.

    30. [30]

      [30] D.C. Wang, Y.M. Xie, C. Fan, et al., Efficient and mild cyclization procedures for the synthesis of novel 2-amino-4H-pyran derivatives with potential antitumor activity, Chin. Chem. Lett. 25 (2014) 1011-1013.

    31. [31]

      [31] B.D. Cui, W.Y. Han, Z.J. Wu, et al., Enantioselective synthesis of quaternary 3-aminooxindoles via organocatalytic asymmetric Michael addition of 3-monosubstituted 3-aminooxindoles to nitroolefins, J. Org. Chem. 78 (2013) 8833-8839.

    32. [32]

      [32] B.D. Cui, J. Zuo, J.Q. Zhao, et al., Tandem Michael addition-ring transformation reactions of 3-hydroxyoxindoles/3-aminooxindoles with olefinic azlactones: direct access to structurally diverse spirocyclic oxindoles, J. Org. Chem. 79 (2014) 5305-5314.

  • 加载中
    1. [1]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    2. [2]

      Min LiuDi WangZenghui YeDonghao JiangBencan TangYanqi WuFengzhi Zhang . Highly stereo- and enantio-selective synthesis of spiro cyclopropyl oxindoles via organic catalyst-mediated cyclopropanation. Chinese Chemical Letters, 2025, 36(10): 110923-. doi: 10.1016/j.cclet.2025.110923

    3. [3]

      Jiang-Feng XingKang LiWan XiangYang-Yang JuXin-Jing ZhaoXiao-Hui MaMei-Lin ZhangYuan-Zhi Tan . Oxa-helicenes embedding heptagons by stepwise cyclization of [6]helicene unit. Chinese Chemical Letters, 2025, 36(11): 110982-. doi: 10.1016/j.cclet.2025.110982

    4. [4]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    5. [5]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    6. [6]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    7. [7]

      Zheng ZhangLei ShiBin WangJingyuan QuXiaoling WangTao WangQitao JiangWuhong XueXiaohong Xu . Epitaxial growth of full-vdW α-In2Se3/MoS2 heterostructures for all-in-one sensing and memory-computing artificial visual system. Chinese Chemical Letters, 2025, 36(3): 109687-. doi: 10.1016/j.cclet.2024.109687

    8. [8]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    9. [9]

      Ji-Jia ZhouLi-Gao LiuZhen-Tao ZhangHao-Xuan DongXin LuZhou XuXin-Qi ZhuBo ZhouLong-Wu Ye . Copper-catalyzed asymmetric cascade diyne cyclization/Meinwald rearrangement. Chinese Chemical Letters, 2025, 36(9): 110870-. doi: 10.1016/j.cclet.2025.110870

    10. [10]

      Wenxiong YuChenyu YangXian FengChengshuo Shen . Scholl cyclization of [6]helicenes into negatively curved hexa[7]circulenes. Chinese Chemical Letters, 2025, 36(11): 110939-. doi: 10.1016/j.cclet.2025.110939

    11. [11]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    12. [12]

      Fengqing WangChangxing QiChunmei ChenQin LiQingyi TongWeiguang SunZhengxi HuMinyan WangHucheng ZhuLianghu GuYonghui Zhang . Discovery and enantioselective total synthesis of antitumor agent asperfilasin A via a regio- and diastereoselective Nazarov cyclization. Chinese Chemical Letters, 2025, 36(6): 110252-. doi: 10.1016/j.cclet.2024.110252

    13. [13]

      Yi-Kao XuGuo-Ping LuoLiang-Bin HuWei-Min He . Asymmetric Büchner reaction and arene cyclopropanation via copper-catalyzed controllable cyclization of diynes. Chinese Chemical Letters, 2025, 36(8): 111226-. doi: 10.1016/j.cclet.2025.111226

    14. [14]

      Qian LiuYi ShiKaiya WangXiao-Yu Hu . Tailoring cascade hydrolysis and cyclization efficiency in confined spaces via spatial and electrostatic regulation. Chinese Chemical Letters, 2025, 36(12): 111462-. doi: 10.1016/j.cclet.2025.111462

    15. [15]

      Ruixin XUHongtuo LIChen SHIYanhong YAN . Factors influencing the spectral properties of composite luminescent materials SrTiO3: Eu3+/SrAl2O4: Eu2+, Dy3+. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2307-2316. doi: 10.11862/CJIC.20250055

    16. [16]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    17. [17]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    18. [18]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    19. [19]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Xiaofan ZHANGYu DUANMeijie SHINan LURenhong LIXiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079

Metrics
  • PDF Downloads(0)
  • Abstract views(1118)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return